Sparse Lens Inversion Technique (SLIT): lens and source separability from linear inversion of the source reconstruction problem

Strong gravitational lensing offers a wealth of astrophysical information on the background source it affects, provided the lensed source can be reconstructed as if it was seen in the absence of lensing. In the present work, we illustrate how sparse optimisation can address the problem. As a first step towards a full free-form lens modelling technique, we consider linear inversion of the lensed source under sparse regularisation and joint deblending from the lens light profile. The method is based on morphological component analysis, assuming a known mass model. We show with numerical experiments that representing the lens and source light using an undecimated wavelet basis allows us to reconstruct the source and to separate it from the foreground lens at the same time. Both the source and lens light have a non-analytic form, allowing for the flexibility needed in the inversion to represent arbitrarily small and complex luminous structures in the lens and source. in addition, sparse regularisation avoids over-fitting the data and does not require the use of any adaptive mesh or pixel grid. As a consequence, our reconstructed sources can be represented on a grid of very small pixels. Sparse regularisation in the wavelet domain also allows for automated computation of the regularisation parameter, thus minimising the impact of arbitrary choice of initial parameters. Our inversion technique for a fixed mass distribution can be incorporated in future lens modelling technique iterating over the lens mass parameters. The python package corresponding to the algorithms described in this article can be downloaded via the github platform at this https URL.

[1]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[2]  S. Finkelstein,et al.  Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.

[3]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE , 2012, 1201.2988.

[4]  Jean-Luc Starck,et al.  High Resolution Weak Lensing Mass-Mapping Combining Shear and Flexion , 2016, 1603.01599.

[5]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[6]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[7]  P. Schneider,et al.  Source-position transformation: an approximate invariance in strong gravitational lensing , 2013, 1306.4675.

[8]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[9]  S. Warren,et al.  Semilinear Gravitational Lens Inversion , 2003, astro-ph/0302587.

[10]  Simon Dye,et al.  AutoLens: automated modeling of a strong lens’s light, mass, and source , 2017, 1708.07377.

[11]  A. Bolton,et al.  Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.

[12]  A. D. Feinstein,et al.  HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses , 2018, 1801.09734.

[13]  L. Williams,et al.  Testing light-traces-mass in Hubble Frontier Fields Cluster MACS-J0416.1-240 , 2015, Proceedings of the International Astronomical Union.

[14]  P. Marshall,et al.  DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.

[15]  G. Meylan,et al.  A PCA-based automated finder for galaxy-scale strong lenses , 2014, 1403.1063.

[16]  S. Dye,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131−1231 , 2012, 1208.6009.

[17]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[18]  L. Koopmans,et al.  Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies , 2008, 0805.0201.

[19]  B. Hilbert,et al.  The Frontier Fields: Survey Design , 2016 .

[20]  R. Gavazzi,et al.  Extensive light profile fitting of galaxy-scale strong lenses. Towards an automated lens detection method , 2014, 1411.1265.

[21]  David Harvey,et al.  The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.

[22]  J. Kneib,et al.  The CFHTLS-Strong Lensing Legacy Survey (SL2S): Investigating the group-scale lenses with the SARCS sample , 2011, 1109.1821.

[23]  G. Meylan,et al.  COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA , 2013, 1306.4732.

[24]  A. Bolton,et al.  THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.

[25]  J. Silk,et al.  A free-form mass model of the Hubble Frontier Fields cluster AS1063 (RXC J2248.7−4431) with over one hundred constraints , 2015, 1512.07916.

[26]  LENSVIEW : software for modelling resolved gravitational lens images , 2006, astro-ph/0609542.

[27]  J. Richard,et al.  The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake , 2017, Nature Astronomy.

[28]  Jean-Luc Starck,et al.  Super-resolution method using sparse regularization for point-spread function recovery , 2014, ArXiv.

[29]  J. Kneib,et al.  Systematic or signal? How dark matter misalignments can bias strong lensing models of galaxy clusters , 2016, 1601.06793.

[30]  Cambridge,et al.  A Bayesian analysis of regularized source inversions in gravitational lensing , 2006, astro-ph/0601493.

[31]  M. Oguri The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.

[32]  J. Starck,et al.  Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects , 2016, 1603.00473.

[33]  P. Schneider,et al.  Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing , 2013, 1306.0901.

[34]  Jean-Luc Starck,et al.  Space variant deconvolution of galaxy survey images , 2017, 1703.02305.

[35]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[36]  D. Coe,et al.  Lens models under the microscope: Comparison of Hubble Frontier Field cluster magnification maps , 2016, 1605.07621.

[37]  Rémi Gribonval,et al.  Performance measurement in blind audio source separation , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[38]  A. Chambolle,et al.  On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm” , 2015, J. Optim. Theory Appl..

[39]  S. Warren,et al.  Decomposition of the Visible and Dark Matter in the Einstein Ring 0047–2808 by Semilinear Inversion , 2004, astro-ph/0411452.

[40]  F. Bellagamba,et al.  Zooming into the Cosmic Horseshoe: new insights on the lens profile and the source shape , 2016, 1610.06003.

[41]  S. Dye,et al.  Adaptive semi-linear inversion of strong gravitational lens imaging , 2014, 1412.7436.

[42]  F. Bellagamba,et al.  Lensed: a code for the forward reconstruction of lenses and sources from strong lensing observations , 2015, 1505.07674.

[43]  S. Djorgovski,et al.  Three quasi-stellar objects acting as strong gravitational lenses , 2011, 1110.5514.

[44]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[45]  J. Anderson,et al.  LOFAR sparse image reconstruction , 2014, 1406.7242.

[46]  Mohamed-Jalal Fadili,et al.  The Undecimated Wavelet Decomposition and its Reconstruction , 2007, IEEE Transactions on Image Processing.

[47]  A. Amara,et al.  GRAVITATIONAL LENS MODELING WITH BASIS SETS , 2015, 1504.07629.

[48]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[49]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[50]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[51]  J. Read,et al.  Gravitational lens recovery with glass: measuring the mass profile and shape of a lens , 2014, 1401.7990.

[52]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[53]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[54]  Alexandru Onose,et al.  Robust sparse image reconstruction of radio interferometric observations with PURIFY , 2016, 1610.02400.

[55]  Adam Amara,et al.  lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.

[56]  C. Alard Perturbative reconstruction of a gravitational lens: when mass does not follow light , 2009, 0901.0344.