Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae.

[1]  E. Nagamori,et al.  The Effect of Pyruvate Decarboxylase Gene Knockout in Saccharomyces cerevisiae on L-Lactic Acid Production , 2006, Bioscience, biotechnology, and biochemistry.

[2]  S. Dequin,et al.  Engineering of 2,3-Butanediol Dehydrogenase To Reduce Acetoin Formation by Glycerol-Overproducing, Low-Alcohol Saccharomyces cerevisiae , 2009, Applied and Environmental Microbiology.

[3]  J. Nielsen,et al.  Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2‐oxoglutarate due to depletion of the NADPH pool , 2001, Yeast.

[4]  J. Chu,et al.  Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. , 2010, Bioresource technology.

[5]  P. Kötter,et al.  Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. , 2004, Metabolic engineering.

[6]  H. Rehbein,et al.  Acetoin degradation in Bacillus subtilis by direct oxidative cleavage. , 1975, European journal of biochemistry.

[7]  Yong-Su Jin,et al.  Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. , 2014, Journal of biotechnology.

[8]  R. P. Chambers,et al.  The dehydration of fermentative 2,3‐butanediol into methyl ethyl ketone , 1987, Biotechnology and bioengineering.

[9]  Jin Hou,et al.  Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae , 2009, Applied Microbiology and Biotechnology.

[10]  Yong‐Su Jin,et al.  Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. , 2013, Bioresource technology.

[11]  M. Penttilä,et al.  Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae , 2003, Applied and Environmental Microbiology.

[12]  N. Qureshi,et al.  Production of 2,3-butanediol by Klebsiella oxytoca , 1989, Applied Microbiology and Biotechnology.

[13]  L. Olsson,et al.  Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae , 2007, Proceedings of the National Academy of Sciences.

[14]  M. Oh,et al.  Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering , 2011, Microbial Cell Factories.

[15]  J. Pronk,et al.  Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose , 1996, Yeast.

[16]  J. Nikawa,et al.  Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. , 1991, The Journal of biological chemistry.

[17]  Mark Johnston,et al.  Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Pronk,et al.  An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae , 2012, Microbial Cell Factories.

[19]  R. Müller,et al.  Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. , 1995, Gene.

[20]  P. Petrova,et al.  High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31 , 2009, Applied Microbiology and Biotechnology.

[21]  M. Syu Biological production of 2,3-butanediol , 2001, Applied Microbiology and Biotechnology.

[22]  A. Blomberg,et al.  Cloning and characterization of GPD2, a second gene encoding sn‐glycerol 3‐phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1 , 1995, Molecular microbiology.

[23]  J M Thevelein,et al.  The two isoenzymes for yeast NAD+‐dependent glycerol 3‐phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation , 1997, The EMBO journal.

[24]  M. Kleerebezem,et al.  Cofactor Engineering: a Novel Approach to Metabolic Engineering in Lactococcus lactis by Controlled Expression of NADH Oxidase , 1998, Journal of bacteriology.

[25]  J Villadsen,et al.  Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. , 2000, Metabolic engineering.

[26]  J. Förster,et al.  In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. , 2006, Metabolic engineering.

[27]  Matthew D. W. Piper,et al.  Directed Evolution of Pyruvate Decarboxylase-Negative Saccharomyces cerevisiae, Yielding a C2-Independent, Glucose-Tolerant, and Pyruvate-Hyperproducing Yeast , 2004, Applied and Environmental Microbiology.

[28]  M. Oldiges,et al.  Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. , 2009, Metabolic engineering.

[29]  James C. Liao,et al.  Acetolactate Synthase from Bacillus subtilis Serves as a 2-Ketoisovalerate Decarboxylase for Isobutanol Biosynthesis in Escherichia coli , 2009, Applied and Environmental Microbiology.

[30]  G. Suzzi,et al.  Origin and Production of Acetoin during Wine Yeast Fermentation , 1996, Applied and environmental microbiology.

[31]  Yong-Su Jin,et al.  2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae , 2014, Applied Microbiology and Biotechnology.

[32]  S. Dequin,et al.  Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism. , 2006, Metabolic engineering.

[33]  B. Czupryński,et al.  New compounds for production of polyurethane foams , 2006 .

[34]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[35]  Hadi Valadi,et al.  Microaerobic glycerol formation in Saccharomyces cerevisiae , 2000, Yeast.