A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria.
暂无分享,去创建一个
Rudolf Amann | Verena Salman | Anne-Christin Girnth | Lubos Polerecky | Jake V Bailey | Signe Høgslund | Gerdhard Jessen | Silvio Pantoja | Heide N Schulz-Vogt | R. Amann | S. Pantoja | H. Schulz-Vogt | L. Polerecky | J. Bailey | V. Salman | Signe Høgslund | G. Jessen | Anne-Christin Girnth
[1] L. P. Golobokova,et al. Ecophysiological Characteristics of the Mat-forming Bacterium Thioplocain Bottom Sediments of the Frolikha Bay, Northern Baikal , 2001, Microbiology.
[2] K. Schleifer,et al. ARB: a software environment for sequence data. , 2004, Nucleic acids research.
[3] D. Nelson,et al. Novel, Attached, Sulfur-Oxidizing Bacteria at Shallow Hydrothermal Vents Possess Vacuoles Not Involved in Respiratory Nitrate Accumulation , 2004, Applied and Environmental Microbiology.
[4] W. Strohl,et al. Enumeration, Isolation, and Characterization of Beggiatoa from Freshwater Sediments , 1978, Applied and environmental microbiology.
[5] B. Jørgensen. Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment , 1977 .
[6] S. Winogradsky. Zur Morphologie und Physiologie der Schwefelbacterien , 1888 .
[7] J. Waterbury,et al. Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa , 1982, Archives of Microbiology.
[8] N. Ryan. International Code of Nomenclature of Bacteria. Bacteriological Code , 1977 .
[9] B. Jørgensen,et al. Community Structure of Filamentous, Sheath-Building Sulfur Bacteria, Thioploca spp., off the Coast of Chile , 1996, Applied and environmental microbiology.
[10] H. Philippe,et al. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. , 1996, International journal of systematic bacteriology.
[11] D. Nelson,et al. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents , 2009, Marine biology.
[12] G. Garrity. Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.
[13] W. Ludwig,et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.
[14] Y. Koizumi,et al. Community Structure of Bacteria Associated with Sheaths of Freshwater and Brackish Thioploca Species , 2006, Microbial Ecology.
[15] L. Levin,et al. Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria , 2011, The ISME Journal.
[16] R. E. Buchanan,et al. Bergey's manual of determinative bacteriology. 8th Edition. , 1974 .
[17] M. Fukui,et al. Phylogenetic analysis of Beggiatoa spp. from organic rich sediment of Tokyo Bay, Japan. , 2003, Water research.
[18] J. Nielsen,et al. Distribution, ecology and molecular identification of Thioploca from Danish brackish water sediments. , 2010, FEMS microbiology ecology.
[19] M. Sogin,et al. Phylogenetic relationships of a large marine Beggiatoa. , 1999, Systematic and applied microbiology.
[20] D. Nelson,et al. The Genera Beggiatoa and Thioploca , 2006 .
[21] B. Jørgensen,et al. Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79 degrees N). , 2010, FEMS microbiology ecology.
[22] K. Knittel,et al. A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. , 2011, Environmental microbiology.
[23] J. Stein. Subtidal Gastropods Consume Sulfur-Oxidizing Bacteria: Evidence from Coastal Hydrothermal Vents , 1984, Science.
[24] R. Amann,et al. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. , 2003, Environmental microbiology.
[25] D. Prieur,et al. Microscopic examination and fatty acid characterization of filamentous bacteria colonizing substrata around subtidal hydrothermal vents , 1989, Archives of Microbiology.
[26] S. Joye,et al. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites , 2007, Nature.
[27] L. Parson,et al. Hydrothermal vents and processes , 1995, Geological Society, London, Special Publications.
[28] D. Nelson,et al. Phylogenetic Affinity of a Wide, Vacuolate, Nitrate-AccumulatingBeggiatoa sp. from Monterey Canyon, California, withThioploca spp , 1999, Applied and Environmental Microbiology.
[29] D. Nelson,et al. Cultivated Beggiatoa spp. define the phylogenetic root of morphologically diverse, noncultured, vacuolate sulfur bacteria. , 2006, Canadian journal of microbiology.
[30] Pha Sneath,et al. Approved Lists of Bacterial Names (Amended) , 1989 .
[31] Sp Lapage,et al. International Code of Nomenclature of Bacteria , 1992 .
[32] R. Castenholz,et al. Organic Nutrition of Beggiatoa sp , 1981, Journal of bacteriology.
[33] G. Geesey,et al. Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents , 1998 .
[34] U. Lins,et al. Comparative analysis of Beggiatoa from hypersaline and marine environments. , 2010, Micron.
[35] T. Fenchel,et al. Survey of Motile Microaerophilic Bacterial Morphotypes in the Oxygen Gradient above a Marine Sulfidic Sediment , 2005, Applied and Environmental Microbiology.
[36] J. Vaucher. Histoire des conferves d'eau douce, contenant leurs différens modes de reproduction, et la description de leurs principales espèces, suivie de l'histoire des trémelles et des ulves d'eau douce , 1803 .
[37] R. Murray,et al. The fine structure of Thioploca ingrica and a comparison with Beggiatoa. , 1965, Canadian journal of microbiology.
[38] V. Gallardo,et al. Large benthic microbial communities in sulphide biota under Peru–Chile Subsurface Countercurrent , 1977, Nature.
[39] H. N. Schulz,et al. Big bacteria. , 2001, Annual review of microbiology.
[40] D. Canfield,et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca , 1995, Nature.
[41] G. Lavik,et al. Physiological Adaptation of a Nitrate-Storing Beggiatoa sp. to Diel Cycling in a Phototrophic Hypersaline Mat , 2007, Applied and Environmental Microbiology.
[42] D. Nelson,et al. High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp , 1996, Applied and environmental microbiology.
[43] S. T. Cowan. Bergey's Manual of Determinative Bacteriology , 1948, Nature.
[44] A. Teske,et al. Morphological and Phylogenetic Characterizations of Freshwater Thioploca Species from Lake Biwa, Japan, and Lake Constance, Germany , 2003, Applied and Environmental Microbiology.
[45] Victor A. Gallardo,et al. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles , 1999 .
[46] P. Dando,et al. Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea , 1995, Geological Society, London, Special Publications.
[47] M. Jensen,et al. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms , 1993, Applied and environmental microbiology.
[48] P. Sneath,et al. Approved lists of bacterial names. , 1980, The Medical journal of Australia.
[49] V. Gallardo,et al. Thioploca araucae sp. nov. and Thioploca chileae sp. nov. , 1984 .
[50] B. Jørgensen,et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. , 1999, Science.
[51] Renzo Kottmann,et al. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. , 2008, Systematic and applied microbiology.
[52] F. Gannon,et al. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. , 1991, PCR methods and applications.
[53] D. Nelson,et al. Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site , 1989, Nature.
[54] A. Teske,et al. Phylogeny of Thioploca and Related Filamentous Sulfide-Oxidizing Bacteria , 1995 .
[55] S. Joye,et al. Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. , 2005, Environmental Microbiology.
[56] H. Schulz. The Genus Thiomargarita , 2006 .
[57] M. Henk,et al. Filamentous sulfide‐oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico , 1996, Microscopy research and technique.
[58] D. Nelson,et al. Characterization of Large, Autotrophic Beggiatoa spp. Abundant at Hydrothermal Vents of the Guaymas Basin , 1989, Applied and environmental microbiology.
[59] J. Euzéby,et al. International code of nomenclature of prokaryotes. Appendix 9: Orthography. , 2009, International journal of systematic and evolutionary microbiology.
[60] M. Muntyan,et al. Lithoautotrophic growth of the freshwater strain Beggiatoa D-402 and energy conservation in a homogeneous culture under microoxic conditions. , 2001, FEMS microbiology letters.
[61] Harald Meier,et al. 46. ARB: A Software Environment for Sequence Data , 2011 .
[62] C. Sorlini,et al. Comparison of Different Primer Sets for Use in Automated Ribosomal Intergenic Spacer Analysis of Complex Bacterial Communities , 2004, Applied and Environmental Microbiology.
[63] Nina Springer,et al. Comparative Sequence Analysis of 23S rRNA from Proteobacteria , 1995 .
[64] K. J. Clarke,et al. The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. , 1996, Microbiology.
[65] J. Larkin,et al. Characterization of Thiothrix nivea , 1983 .
[66] J. Thompson,et al. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.
[67] G. Cannon,et al. Heterotrophic Carbon Metabolism by Beggiatoa alba , 1981, Journal of bacteriology.
[68] H. Schulz-Vogt,et al. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain , 2011, The ISME Journal.