A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria.

The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families.

[1]  L. P. Golobokova,et al.  Ecophysiological Characteristics of the Mat-forming Bacterium Thioplocain Bottom Sediments of the Frolikha Bay, Northern Baikal , 2001, Microbiology.

[2]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[3]  D. Nelson,et al.  Novel, Attached, Sulfur-Oxidizing Bacteria at Shallow Hydrothermal Vents Possess Vacuoles Not Involved in Respiratory Nitrate Accumulation , 2004, Applied and Environmental Microbiology.

[4]  W. Strohl,et al.  Enumeration, Isolation, and Characterization of Beggiatoa from Freshwater Sediments , 1978, Applied and environmental microbiology.

[5]  B. Jørgensen Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment , 1977 .

[6]  S. Winogradsky Zur Morphologie und Physiologie der Schwefelbacterien , 1888 .

[7]  J. Waterbury,et al.  Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa , 1982, Archives of Microbiology.

[8]  N. Ryan International Code of Nomenclature of Bacteria. Bacteriological Code , 1977 .

[9]  B. Jørgensen,et al.  Community Structure of Filamentous, Sheath-Building Sulfur Bacteria, Thioploca spp., off the Coast of Chile , 1996, Applied and environmental microbiology.

[10]  H. Philippe,et al.  16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. , 1996, International journal of systematic bacteriology.

[11]  D. Nelson,et al.  Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents , 2009, Marine biology.

[12]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[13]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[14]  Y. Koizumi,et al.  Community Structure of Bacteria Associated with Sheaths of Freshwater and Brackish Thioploca Species , 2006, Microbial Ecology.

[15]  L. Levin,et al.  Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria , 2011, The ISME Journal.

[16]  R. E. Buchanan,et al.  Bergey's manual of determinative bacteriology. 8th Edition. , 1974 .

[17]  M. Fukui,et al.  Phylogenetic analysis of Beggiatoa spp. from organic rich sediment of Tokyo Bay, Japan. , 2003, Water research.

[18]  J. Nielsen,et al.  Distribution, ecology and molecular identification of Thioploca from Danish brackish water sediments. , 2010, FEMS microbiology ecology.

[19]  M. Sogin,et al.  Phylogenetic relationships of a large marine Beggiatoa. , 1999, Systematic and applied microbiology.

[20]  D. Nelson,et al.  The Genera Beggiatoa and Thioploca , 2006 .

[21]  B. Jørgensen,et al.  Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79 degrees N). , 2010, FEMS microbiology ecology.

[22]  K. Knittel,et al.  A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. , 2011, Environmental microbiology.

[23]  J. Stein Subtidal Gastropods Consume Sulfur-Oxidizing Bacteria: Evidence from Coastal Hydrothermal Vents , 1984, Science.

[24]  R. Amann,et al.  Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. , 2003, Environmental microbiology.

[25]  D. Prieur,et al.  Microscopic examination and fatty acid characterization of filamentous bacteria colonizing substrata around subtidal hydrothermal vents , 1989, Archives of Microbiology.

[26]  S. Joye,et al.  Evidence of giant sulphur bacteria in Neoproterozoic phosphorites , 2007, Nature.

[27]  L. Parson,et al.  Hydrothermal vents and processes , 1995, Geological Society, London, Special Publications.

[28]  D. Nelson,et al.  Phylogenetic Affinity of a Wide, Vacuolate, Nitrate-AccumulatingBeggiatoa sp. from Monterey Canyon, California, withThioploca spp , 1999, Applied and Environmental Microbiology.

[29]  D. Nelson,et al.  Cultivated Beggiatoa spp. define the phylogenetic root of morphologically diverse, noncultured, vacuolate sulfur bacteria. , 2006, Canadian journal of microbiology.

[30]  Pha Sneath,et al.  Approved Lists of Bacterial Names (Amended) , 1989 .

[31]  Sp Lapage,et al.  International Code of Nomenclature of Bacteria , 1992 .

[32]  R. Castenholz,et al.  Organic Nutrition of Beggiatoa sp , 1981, Journal of bacteriology.

[33]  G. Geesey,et al.  Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents , 1998 .

[34]  U. Lins,et al.  Comparative analysis of Beggiatoa from hypersaline and marine environments. , 2010, Micron.

[35]  T. Fenchel,et al.  Survey of Motile Microaerophilic Bacterial Morphotypes in the Oxygen Gradient above a Marine Sulfidic Sediment , 2005, Applied and Environmental Microbiology.

[36]  J. Vaucher Histoire des conferves d'eau douce, contenant leurs différens modes de reproduction, et la description de leurs principales espèces, suivie de l'histoire des trémelles et des ulves d'eau douce , 1803 .

[37]  R. Murray,et al.  The fine structure of Thioploca ingrica and a comparison with Beggiatoa. , 1965, Canadian journal of microbiology.

[38]  V. Gallardo,et al.  Large benthic microbial communities in sulphide biota under Peru–Chile Subsurface Countercurrent , 1977, Nature.

[39]  H. N. Schulz,et al.  Big bacteria. , 2001, Annual review of microbiology.

[40]  D. Canfield,et al.  Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca , 1995, Nature.

[41]  G. Lavik,et al.  Physiological Adaptation of a Nitrate-Storing Beggiatoa sp. to Diel Cycling in a Phototrophic Hypersaline Mat , 2007, Applied and Environmental Microbiology.

[42]  D. Nelson,et al.  High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp , 1996, Applied and environmental microbiology.

[43]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.

[44]  A. Teske,et al.  Morphological and Phylogenetic Characterizations of Freshwater Thioploca Species from Lake Biwa, Japan, and Lake Constance, Germany , 2003, Applied and Environmental Microbiology.

[45]  Victor A. Gallardo,et al.  Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles , 1999 .

[46]  P. Dando,et al.  Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea , 1995, Geological Society, London, Special Publications.

[47]  M. Jensen,et al.  Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms , 1993, Applied and environmental microbiology.

[48]  P. Sneath,et al.  Approved lists of bacterial names. , 1980, The Medical journal of Australia.

[49]  V. Gallardo,et al.  Thioploca araucae sp. nov. and Thioploca chileae sp. nov. , 1984 .

[50]  B. Jørgensen,et al.  Dense populations of a giant sulfur bacterium in Namibian shelf sediments. , 1999, Science.

[51]  Renzo Kottmann,et al.  A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. , 2008, Systematic and applied microbiology.

[52]  F. Gannon,et al.  The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. , 1991, PCR methods and applications.

[53]  D. Nelson,et al.  Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site , 1989, Nature.

[54]  A. Teske,et al.  Phylogeny of Thioploca and Related Filamentous Sulfide-Oxidizing Bacteria , 1995 .

[55]  S. Joye,et al.  Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. , 2005, Environmental Microbiology.

[56]  H. Schulz The Genus Thiomargarita , 2006 .

[57]  M. Henk,et al.  Filamentous sulfide‐oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico , 1996, Microscopy research and technique.

[58]  D. Nelson,et al.  Characterization of Large, Autotrophic Beggiatoa spp. Abundant at Hydrothermal Vents of the Guaymas Basin , 1989, Applied and environmental microbiology.

[59]  J. Euzéby,et al.  International code of nomenclature of prokaryotes. Appendix 9: Orthography. , 2009, International journal of systematic and evolutionary microbiology.

[60]  M. Muntyan,et al.  Lithoautotrophic growth of the freshwater strain Beggiatoa D-402 and energy conservation in a homogeneous culture under microoxic conditions. , 2001, FEMS microbiology letters.

[61]  Harald Meier,et al.  46. ARB: A Software Environment for Sequence Data , 2011 .

[62]  C. Sorlini,et al.  Comparison of Different Primer Sets for Use in Automated Ribosomal Intergenic Spacer Analysis of Complex Bacterial Communities , 2004, Applied and Environmental Microbiology.

[63]  Nina Springer,et al.  Comparative Sequence Analysis of 23S rRNA from Proteobacteria , 1995 .

[64]  K. J. Clarke,et al.  The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. , 1996, Microbiology.

[65]  J. Larkin,et al.  Characterization of Thiothrix nivea , 1983 .

[66]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[67]  G. Cannon,et al.  Heterotrophic Carbon Metabolism by Beggiatoa alba , 1981, Journal of bacteriology.

[68]  H. Schulz-Vogt,et al.  Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain , 2011, The ISME Journal.