Control and optimization of the divided wall column

The divided wall column (DWC) is, in terms of capital costs and energy savings, a promising alternative for separating ternary mixtures. Since its design was proposed, almost 50 years ago, many authors have addressed design considerations. Operation and control of the DWC have received much less attention. However, some works have been published recently. Preliminary results reported indicate that feedback diagonal control structures may be used to control the DWC. In this work, the study of feedback diagonal control strategies has been further extended to consider the DWC control design in detail. Different control structures have been systematically analyzed and compared under performance and robustness considerations. In order to study the effect of the energy optimization on the controllability of the DWC, a column at optimal nominal operating conditions is compared to a column under non-optimal operation. Finally, a complete control strategy is proposed. Linear analysis tools are used for the multiple input multiple output (MIMO) feedback control analysis, and simulations using a non-linear model are performed to study the non-linear behavior of the control systems.