The RUNX1-ETO target gene RASSF2 suppresses t(8;21) AML development and regulates Rac GTPase signaling

[1]  Mickey C. Smith,et al.  Regulators and Regulations , 2020 .

[2]  Ming Yan,et al.  Hippo Kinase Loss Contributes to Del(20q) Hematologic Malignancies through Chronic Innate Immune Activation. , 2019, Blood.

[3]  Ashley M. Zehnder,et al.  The Functional Proximal Proteome of Oncogenic Ras Includes mTORC2. , 2019, Molecular cell.

[4]  Peter Vogel,et al.  Hippo Kinases Mst1 and Mst2 Sense and Amplify IL‐2R‐STAT5 Signaling in Regulatory T Cells to Establish Stable Regulatory Activity , 2018, Immunity.

[5]  Salam A. Assi,et al.  The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation , 2018, Cancer cell.

[6]  Beth Wilmot,et al.  Functional Genomic Landscape of Acute Myeloid Leukemia , 2018, Nature.

[7]  H. Donninger,et al.  RASSF1A Deficiency Enhances RAS-Driven Lung Tumorigenesis. , 2018, Cancer research.

[8]  Y. Hata,et al.  Tumor suppressor C-RASSF proteins , 2018, Cellular and Molecular Life Sciences.

[9]  B. Burke,et al.  BioID: A Screen for Protein‐Protein Interactions , 2018, Current protocols in protein science.

[10]  M. Kazanietz,et al.  The Rac GTPase in Cancer: From Old Concepts to New Paradigms. , 2017, Cancer research.

[11]  D. Dunson,et al.  Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma , 2017, Cell.

[12]  B. Cravatt,et al.  A Screen for Protein-Protein Interactions in Live Mycobacteria Reveals a Functional Link between the Virulence-Associated Lipid Transporter LprG and the Mycolyltransferase Antigen 85A. , 2017, ACS infectious diseases.

[13]  R. Young,et al.  Transcriptional Addiction in Cancer , 2017, Cell.

[14]  Heather L. Mulder,et al.  The genomic landscape of core-binding factor acute myeloid leukemias , 2016, Nature Genetics.

[15]  Kenneth H. Roux,et al.  An improved smaller biotin ligase for BioID proximity labeling , 2016, Molecular biology of the cell.

[16]  Jiahuai Han,et al.  The kinases Mst 1 and Mst 2 positively regulate phagocyte ROS induction and bactericidal activity , 2016 .

[17]  Toshiro K. Ohsumi,et al.  Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections. , 2015, The New England journal of medicine.

[18]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[19]  Salam A. Assi,et al.  Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal , 2014, Cell reports.

[20]  L. V. D. Weyden,et al.  RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2 , 2014, Nature Cell Biology.

[21]  C. Matte-Martone Blast Crisis CML Cells Require IFN-γ Conditioning For Effective GVL Whereas Chronic Phase CML Cells Do Not: An Explanation For Chronic Phase CML GVL-Sensitivity , 2013 .

[22]  B. Burke,et al.  BioID: A Screen for Protein‐Protein Interactions , 2013, Current protocols in protein science.

[23]  Nicola K. Wilson,et al.  Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes. , 2013, Blood.

[24]  Ming Yan,et al.  Cooperation between RUNX1-ETO9a and Novel Transcriptional Partner KLF6 in Upregulation of Alox5 in Acute Myeloid Leukemia , 2013, PLoS genetics.

[25]  A. Tanay,et al.  Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. , 2013, Cell reports.

[26]  Amber L. Couzens,et al.  The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data , 2013, Nature Methods.

[27]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[28]  O. Elemento,et al.  A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis , 2013, Nature.

[29]  K. Guan,et al.  The Hippo pathway: regulators and regulations. , 2013, Genes & development.

[30]  Fan Mou,et al.  Protein kinases of the Hippo pathway: regulation and substrates. , 2012, Seminars in cell & developmental biology.

[31]  Ming Yan,et al.  Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. , 2012, Blood.

[32]  Jennifer A. Clark,et al.  Loss of RASSF2 Enhances Tumorigencity of Lung Cancer Cells and Confers Resistance to Chemotherapy , 2012, Molecular biology international.

[33]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[34]  F. Rieux-Laucat,et al.  MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. , 2012, Blood.

[35]  Hyunsook Kim,et al.  Ablation of Rassf2 induces bone defects and subsequent haematopoietic anomalies in mice , 2012, The EMBO journal.

[36]  A. Schäffer,et al.  The phenotype of human STK4 deficiency. , 2011, Blood.

[37]  David A. Williams,et al.  Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. , 2011, Blood.

[38]  S. Sugano,et al.  Frequent pathway mutations of splicing machinery in myelodysplasia , 2011, Nature.

[39]  S. Shurtleff,et al.  Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[40]  L. Hesson,et al.  The Ras Effector RASSF2 Controls the PAR-4 Tumor Suppressor , 2010, Molecular and Cellular Biology.

[41]  Ju-Seog Lee,et al.  Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver , 2010, Proceedings of the National Academy of Sciences.

[42]  S. Holland,et al.  Combined immunodeficiency associated with DOCK8 mutations. , 2009, The New England journal of medicine.

[43]  G. Pfeifer,et al.  The RASSF proteins in cancer; from epigenetic silencing to functional characterization. , 2009, Biochimica et biophysica acta.

[44]  R. Mehta,et al.  Prerenal failure: from old concepts to new paradigms , 2009, Current opinion in critical care.

[45]  G. Peters,et al.  RUNX1 and its fusion oncoprotein derivative RUNX1-ETO induce senescence-like growth arrest independently of replicative stress , 2009, Oncogene.

[46]  K. Mills,et al.  Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia , 2007, Leukemia.

[47]  K. Katagiri,et al.  Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion , 2006, Nature Immunology.

[48]  David A. Williams,et al.  The role of chemokine activation of Rac GTPases in hematopoietic stem cell marrow homing, retention, and peripheral mobilization. , 2006, Experimental hematology.

[49]  Ming Yan,et al.  A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis , 2006, Nature Medicine.

[50]  Alan Hall,et al.  Rho GTPases: biochemistry and biology. , 2005, Annual review of cell and developmental biology.

[51]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  L. Hesson,et al.  CpG island promoter hypermethylation of a novel Ras-effector gene RASSF2A is an early event in colon carcinogenesis and correlates inversely with K-ras mutations , 2005, Oncogene.

[53]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[54]  G. Clark,et al.  RASSF2 Is a Novel K-Ras-specific Effector and Potential Tumor Suppressor* , 2003, Journal of Biological Chemistry.

[55]  A. Nordheim,et al.  AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. , 2003, Blood.

[56]  James R. Downing,et al.  ETO, a Target of t(8;21) in Acute Leukemia, Makes Distinct Contacts with Multiple Histone Deacetylases and Binds mSin3A through Its Oligomerization Domain , 2001, Molecular and Cellular Biology.

[57]  Toshikazu Shirai,et al.  Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration , 2001, Nature.

[58]  G. Yang,et al.  Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. , 2001, Cancer research.

[59]  Torsten Haferlach,et al.  AML1–ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia , 2001, Nature Medicine.

[60]  Chun Xing Li,et al.  Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3 , 2000, Nature Genetics.

[61]  A. W. Harris,et al.  Promoter elements of vav drive transgene expression in vivo throughout the hematopoietic compartment. , 1999, Blood.

[62]  G. Bokoch,et al.  Requirements for Both Rac1 and Cdc42 in Membrane Ruffling and Phagocytosis in Leukocytes , 1997, The Journal of experimental medicine.

[63]  Michael Frank Harris,et al.  Lymphoma , 1990, BMJ : British Medical Journal.

[64]  Dong-er Zhang,et al.  RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. , 2012, Frontiers in bioscience.

[65]  D. Lim,et al.  Role of the tumor suppressor RASSF2 in regulation of MST1 kinase activity. , 2010, Biochemical and biophysical research communications.

[66]  D. Tenen,et al.  The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. , 2003, Blood.

[67]  Biochemistry and Biology , 1933, Nature.

[68]  Eunhee Kim,et al.  Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway , 2014, Acta crystallographica. Section D, Biological crystallography.