Effects of two strategies on afterglow behavior of Lu2O3:Eu single crystal scintillator: co-doping with Pr3+ and solid solution with Sc2O3

[1]  Haibo Guo,et al.  Band structures of RE2O3:Eu (RE = Lu, Y, Sc) from perspective of spin-polarized quasi-particle approximation , 2021 .

[2]  N. Can,et al.  Thermoluminescence glow curve analysis and kinetic parameters of Dy-doped BaSi2O5 phosphor , 2020 .

[3]  Tiantian Wang,et al.  Role of Yttrium in Thermoluminescence of LYSO:Ce Crystals , 2020 .

[4]  C. Melcher,et al.  Role of Lithium Codoping in Enhancing the Scintillation Yield of Aluminate Garnets , 2020 .

[5]  Kaixin Song,et al.  Significant enhancement of blue photoluminescence intensity of Dy3+ modified Sr6Ca4(PO4)6F2:Eu2+ phosphors , 2020 .

[6]  G. Bizarri,et al.  Modified floating-zone crystal growth of Mg4Ta2O9 and its scintillation performance , 2020 .

[7]  Zhi-Jun Zhang,et al.  Correlation of afterglow, trap states and site preference in RE2O3:1%Eu (RE = Lu, Y, Sc) single crystal scintillators , 2019, Journal of Luminescence.

[8]  M. Lees,et al.  Single-Crystal Growth of Metallic Rare-Earth Tetraborides by the Floating-Zone Technique , 2019, Crystals.

[9]  Zhi-Jun Zhang,et al.  The luminescent properties comparison of RE2O3:Eu(RE=Lu,Y,Sc) with high and low Eu doping concentrations , 2019, Journal of Alloys and Compounds.

[10]  K. Pita,et al.  Effect of the interaction distance on 614 nm red emission from Eu3+ ions due to the energy transfer from ZnO-nc to Eu3+ ions , 2018, Optical Materials Express.

[11]  Zhi-Jun Zhang,et al.  Afterglow Behavior, Energy Transfer and Trap States in Lu2O3:Eu Single Crystal Scintillator , 2018 .

[12]  P. Douissard,et al.  Single crystal lutetium oxide thin film scintillators for X-ray imaging , 2016 .

[13]  J. Schaab,et al.  Growth of high-quality hexagonal ErMnO3 single crystals by the pressurized floating-zone method , 2015 .

[14]  Seung Jun Lee,et al.  Synthesis and scintillation characterization of nanocrystalline Lu2O3(Eu) powder for high-resolution X-ray imaging detectors , 2012 .

[15]  B. Viana,et al.  Improved scintillation time response in (Lu0.5Gd0.5)2O3 : Eu3+ compared with Lu2O3 : Eu3+ transparent ceramics , 2011 .

[16]  Xie Jianjun,et al.  The influence of Pr3+ co-doping on the luminescent properties of Lu2O3:5 mol% Eu films , 2011 .

[17]  E. Zych,et al.  Afterglow Luminescence of Lu2O3:Eu Ceramics Synthesized at Different Atmospheres , 2010 .

[18]  A. Chroneos,et al.  Intrinsic defect processes in bixbyite sesquioxides , 2007 .

[19]  E. Zych,et al.  Anomalous activity of Eu3+ in S6 site of Lu2O3 in persistent luminescence , 2007 .

[20]  C. Pédrini Scintillation mechanisms and limiting factors on each step of relaxation of electronic excitations , 2005 .

[21]  O Tillement,et al.  Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. , 2004, Journal of colloid and interface science.

[22]  A. Lempicki,et al.  Hole traps in Lu2O3:Eu ceramic scintillators. I. Persistent afterglow , 2004 .

[23]  Stuart R. Miller,et al.  Lu2O3:Eu scintillator screen for x-ray imaging , 2004, SPIE Optics + Photonics.

[24]  Stuart R. Miller,et al.  A new lutetia-based ceramic scintillator for X-ray imaging , 2002 .

[25]  W. Stręk,et al.  Sintering properties of urea-derived Lu2O3-based phosphors , 2002 .

[26]  E. Zych,et al.  Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3 , 2002 .

[27]  B. C. Grabmaier,et al.  Effect of Pr-codoping on the X-ray induced afterglow of (Y,Gd)2O3:Eu , 1995 .

[28]  A. Meijerink,et al.  Non-radiative relaxation processes of the Pr3+ ion , 1995 .

[29]  W. Schaik,et al.  Influence of defects on the luminescence quantum yield of yttrium europium oxide (Y1.94Eu0.06O3) , 1992 .

[30]  G. Blasse,et al.  Energy transfer between Eu3+ ions in a lattice with two different crystallographic sites: Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3 , 1987 .