Mesh-Based Modeling of Individual Cells and Their Dynamics in Biological Fluids

This text is aimed at providing both basic and advanced knowledge on the individual cell modeling in a flow. Besides the overview of various existing approaches, it is focused on mesh-based model and on its capabilities to cover complex mechano-elastic properties combined with adhesion and magnetic phenomena. We also describe validation procedures, offer an example of use of the model for better understanding of cell behavior and a short overview of future research directions.

[1]  V. S. Molchanov,et al.  Magnetic polymer beads: Recent trends and developments in synthetic design and applications , 2011 .

[2]  M. Dupin,et al.  Modeling the flow of dense suspensions of deformable particles in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Markus Gusenbauer,et al.  An ESPResSo implementation of elastic objects immersed in a fluid , 2013, Comput. Phys. Commun..

[4]  C. Dong,et al.  Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. , 2000, Journal of biomechanics.

[5]  D. Warhurst,et al.  A bench top magnetic separator for malarial parasite concentration , 1981 .

[6]  Jorg Thöming,et al.  Insulator-based dielectrophoresis in viscous media—Simulation of particle and droplet velocity , 2007 .

[7]  R. Waugh,et al.  Elastic area compressibility modulus of red cell membrane. , 1976, Biophysical journal.

[8]  Ivan Cimrak,et al.  Energy contributions of different elastic moduli in mesh-based modeling of deformable objects , 2014, 2014 ELEKTRO.

[9]  Ivan Cimrák,et al.  Local stress analysis of red blood cells in shear flow1) , 2015 .

[10]  I. CIMRÁK,et al.  ON ELASTICITY OF SPRING NETWORK MODELS USED IN BLOOD FLOW SIMULATIONS IN ESPRESSO , 2013 .

[11]  Shigeo Wada,et al.  Spring‐network‐based model of a red blood cell for simulating mesoscopic blood flow , 2013, International journal for numerical methods in biomedical engineering.

[12]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[13]  S. Melle,et al.  Microstructure evolution in magnetorheological suspensions governed by Mason number. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  R. Skalak,et al.  Deformation of Red Blood Cells in Capillaries , 1969, Science.

[15]  T. Steck,et al.  Maturation of the reticulocyte in vitro. , 1984, Journal of cell science.

[16]  James J. Feng,et al.  A particle-based model for the transport of erythrocytes in capillaries , 2009 .

[17]  Burkhard Dünweg,et al.  Lattice Boltzmann Simulation of Polymer-Solvent Systems , 1998 .

[18]  Weihong Tan,et al.  Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. , 2009, Analytical chemistry.

[19]  Mark A. Hayes,et al.  Active Control of Dynamic Supraparticle Structures in Microchannels , 2001 .

[20]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[21]  Markus Gusenbauer,et al.  Self-organizing magnetic beads for biomedical applications , 2011, ArXiv.

[22]  Ivan Cimrák A simplified model for dynamics of cell rolling and cell-surface adhesion1) , 2015 .

[23]  Axel Arnold,et al.  ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models , 2013 .

[24]  R. Fåhraeus THE SUSPENSION STABILITY OF THE BLOOD , 1929 .

[25]  R. Molday,et al.  Application of magnetic microspheres in labelling and separation of cells , 1977, Nature.

[26]  A. Ladd,et al.  Lattice Boltzmann Simulations of Soft Matter Systems , 2008, 0803.2826.

[27]  Aleksander S Popel,et al.  Microcirculation and Hemorheology. , 2005, Annual review of fluid mechanics.

[28]  Richard W. Vuduc,et al.  Petascale Direct Numerical Simulation of Blood Flow on 200K Cores and Heterogeneous Architectures , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[29]  Patrick E. Phelan,et al.  Dynamics of rotating paramagnetic particle chains simulated by particle dynamics, Stokesian dynamics and lattice Boltzmann methods , 2008 .

[30]  Timothy A. Springer,et al.  The Kinetics of L-selectin Tethers and the Mechanics of Selectin-mediated Rolling , 1997, The Journal of cell biology.

[31]  Markus Gusenbauer,et al.  Modelling and simulation of processes in microfluidic devices for biomedical applications , 2012, Comput. Math. Appl..

[32]  N. Derby,et al.  Cylindrical magnets and ideal solenoids , 2009, 0909.3880.

[33]  Subra Suresh,et al.  Molecularly based analysis of deformation of spectrin network and human erythrocyte , 2006 .

[34]  Ivan Cimrák,et al.  Recent advances in mesh-based modeling of individual cells in biological fluids , 2014, The 10th International Conference on Digital Technologies 2014.

[35]  Chunning Ji,et al.  Large scale simulation of red blood cell aggregation in shear flows. , 2013, Journal of biomechanics.

[36]  Himanish Basu,et al.  Tank treading of optically trapped red blood cells in shear flow. , 2011, Biophysical journal.

[37]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations IV , 2005 .

[38]  Robin Fåhræus,et al.  THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES , 1931 .

[39]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[40]  Iveta Jancigova,et al.  Scalability of forces in mesh-based models of elastic objects , 2014, 2014 ELEKTRO.

[41]  S. Suresh,et al.  Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. , 2004, Mechanics & chemistry of biosystems : MCB.

[42]  Robert H. Austin,et al.  Continuous microfluidic immunomagnetic cell separation , 2004 .

[43]  Ken-ichi Tsubota,et al.  Elastic force of red blood cell membrane during tank-treading motion: Consideration of the membrane's natural state , 2010 .

[44]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[45]  D. Melville,et al.  Direct magnetic separation of red cells from whole blood , 1975, Nature.

[46]  Robert MacMeccan,et al.  Mechanistic Effects of Erythrocytes on Platelet Deposition in Coronary Thrombosis , 2007 .

[47]  Abraham P Lee,et al.  Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow‐through separation of beads and cells , 2009, Electrophoresis.

[48]  Dmitry A. Fedosov,et al.  Multiscale Modeling of Blood Flow and Soft Matter , 2010 .

[49]  Kyung Hyun Ahn,et al.  Shear induced damage of red blood cells monitored by the decrease of their deformability , 2004 .

[50]  G. Akoun,et al.  3D analytical calculation of the forces exerted between two cuboidal magnets , 1984 .

[51]  Goldsmith Hl,et al.  Red cell motions and wall interactions in tube flow. , 1971 .

[52]  Ivan Cimrák,et al.  Non‐uniform force allocation for area preservation in spring network models , 2016, International journal for numerical methods in biomedical engineering.

[53]  Thomas M Fischer,et al.  Shape memory of human red blood cells. , 2004, Biophysical journal.

[54]  Jason P. Gleghorn,et al.  Rare Cell Capture in Microfluidic Devices. , 2011, Chemical engineering science.

[55]  Katarzyna A. Rejniak,et al.  Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model , 2012, Front. Oncol..

[56]  Z. Feng,et al.  Proteus: a direct forcing method in the simulations of particulate flows , 2005 .

[57]  George Em Karniadakis,et al.  Multiscale modeling of blood flow in cerebral malaria , 2009 .