Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations

The response surface methodology has been performed based on the Muschelknautz method of modeling (MM) to optimize the cyclone geometrical ratios. Four geometrical factors have significant effects on the cyclone performance viz., the vortex finder diameter, the inlet width and inlet height, and the cyclone total height. There are strong interactions between the effect of inlet dimensions and vortex finder diameter on the cyclone performance. CFD simulations based on Reynolds stress model are also used in the investigation. A new set of geometrical ratios (design) has been obtained (optimized) to achieve minimum pressure drop. A comparison of numerical simulation of the new design and the Stairmand design confirms the superior performance of the new design compared to the Stairmand design.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Michael Trefz,et al.  Extended cyclone theory for gas flows with high solids concentrations , 1993 .

[3]  J. Zhang,et al.  Simulation of Gas Flow Pattern and Separation Efficiency in Cyclone with Conventional Single and Spiral Double Inlet Configuration , 2006 .

[4]  A. Hoekstra,et al.  Gas flow field and collection efficiency of cyclone separators , 2000 .

[5]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[6]  Ernst Lankmayr,et al.  Screening, optimization and validation of microwave-assisted extraction for the determination of persistent organochlorine pesticides , 2005 .

[7]  M. Zanca,et al.  A comparative study of Powell's and Downhill Simplex algorithms for a fast multimodal surface matching in brain imaging. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[8]  Bingtao Zhao,et al.  Modeling pressure drop coefficient for cyclone separators: A support vector machine approach , 2009 .

[9]  W. D. Griffiths,et al.  Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers , 1996 .

[10]  Irfan Karagoz,et al.  Modelling of the Pressure Drop in Tangential Inlet Cyclone Separators , 2005 .

[11]  Edgar Muschelknautz,et al.  Aerodynamische Beiwerte des Zyklonabscheiders aufgrund neuer und verbesserter Messungen , 1970 .

[12]  F. Shahidi,et al.  Optimization of extraction of phenolic compounds from wheat using response surface methodology , 2005 .

[13]  Cristóbal Cortés,et al.  Modeling the gas and particle flow inside cyclone separators , 2007 .

[14]  Bingtao Zhao A Theoretical Approach to Pressure Drop across Cyclone Separators , 2004 .

[15]  S. A. Morsi,et al.  An investigation of particle trajectories in two-phase flow systems , 1972, Journal of Fluid Mechanics.

[16]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[17]  N. Amoura,et al.  Axisymmetric and two-dimensional crack identification using boundary elements and coupled quasi-random downhill simplex algorithms , 2010 .

[18]  T. G. Chuah,et al.  A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics , 2006 .

[19]  Mehrzad Shams,et al.  Numerical simulation of flow field in three types of standard cyclone separators , 2010 .

[20]  Perry D. Haaland,et al.  Experimental design in biotechnology , 1989 .

[21]  Victor G. Bloede Some Early Attempts to Establish the Aniline Industry in United States , 1924 .

[22]  Christian Jordan,et al.  Influence of Vortex-Finder Diameter on Axial Gas Flow in Simple Cyclone , 2008 .

[23]  Thomas J. Overcamp,et al.  Effect of Reynolds Number on the Stokes Number of Cyclones , 1993 .

[24]  I. Karagoz,et al.  Theoretical investigation of pressure losses in cyclone separators , 2001 .

[25]  Jianyi Chen,et al.  A universal model to calculate cyclone pressure drop , 2007 .

[26]  Michael Trefz,et al.  Die verschiedenen Abscheidevorgänge im höher und hoch beladenen Gaszyklon unter besonderer Berücksichtigung der Sekundärströmung , 1992 .

[27]  C. E. Lapple,et al.  Flow Pattern and Pressure Drop in Cyclone Dust Collectors Cyclone without Intel Vane , 1940 .

[28]  Prabhata K. Swamee,et al.  Optimum design of cyclone separator , 2009 .

[29]  Alex C. Hoffmann,et al.  Gas Cyclones and Swirl Tubes: Principles, Design, and Operation , 2007 .

[30]  A. C. Hoffmann,et al.  The effect of the dust collection system on the flowpattern and separation efficiency of a gas cyclone , 1996 .

[31]  Jaan Kiusalaas,et al.  Numerical Methods in Engineering with MATLAB®: Index , 2005 .

[32]  Ahmadun Fakhru’l-Razi,et al.  The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study , 2004 .

[33]  J. Derksen,et al.  An experimental and numerical study of turbulent swirling flow in gas cyclones , 1999 .

[34]  Yuan Yuan,et al.  Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology , 2008 .

[35]  Richard D. Pilkington,et al.  Application of Response Surface Methodology to laser-induced breakdown spectroscopy: Influences of hardware configuration☆ , 2007 .

[36]  Edgar Muschelknautz,et al.  Die Berechnung von Zyklonabscheidern für Gase , 1972 .