Deprotonation of resorcinarenes by mono- and diamine bases: complexation and intermolecular interactions in the solid state

The deprotonation of resorcinarenes by mono- and dibasic amines, viz. triethylamine (TEA) and its dibasic analogue, N,N′-dimethylpiperazine (DMPip), was studied and the resulting supramolecular complexes were analysed in the solid state, in solution and in the gas phase. In the solid state, 1:1 (2TEAH+·(ethyl-resorcinarene)2−·MeOH), 3:2 [DMPip·2DMPipH+·2(ethyl-resorcinarene−)] and 3:2 [2DMPip·DMPipH22+@(2methyl-ethyl-resorcinarene−)2·2MeOH] solid state complexes and interesting resorcinarene−⋯resorcinarene− supramolecular networks formed via enhanced hydrogen bonds involving the hydroxyl groups and the deprotonated hydroxyl groups of the resorcinarenes were observed. The host–guest complexes manifest multiple cation⋯π and C–H⋯π interactions as in neutral resorcinarene inclusion complexes. The deprotonation of the resorcinarenes was observed in solution through titration studies. In the gas phase, the deprotonation of the resorcinarene and the encapsulation of the resulting ammonium ions were observed in the negative and positive ion modes, respectively.

[1]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[2]  Maria Cristina Burla,et al.  SIR2011: a new package for crystal structure determination and refinement , 2012 .

[3]  Ngong Kodiah Beyeh,et al.  Dimeric Resorcin[4]arene Capsules in the Solid State , 2011 .

[4]  Ngong Kodiah Beyeh,et al.  Gas-phase H/D-exchange reactions on resorcinarene and pyrogallarene capsules: Proton transport through a one-dimensional Grotthuss mechanism , 2011 .

[5]  Carlo Perego,et al.  Biomass upgrading through acid–base catalysis , 2010 .

[6]  F. Csende,et al.  Acid- and Base-Promoted Rearrangements of Cycloalkane-Fused Heterocycles , 2010 .

[7]  R. Fröhlich,et al.  The role of cation⋯π interactions in capsule formation: co-crystals of resorcinarenes and alkyl ammonium salts , 2008 .

[8]  K. Rissanen,et al.  Regioselective acylation of aminoresorcinarenes , 2007 .

[9]  M. Messerschmidt,et al.  Effect of the environment on molecular properties: synthesis, structure, and photoluminescence of Cu(I) bis(2,9-dimethyl-1,10-phenanthroline) nanoclusters in eight different supramolecular frameworks. , 2006, Inorganic chemistry.

[10]  Ngong Kodiah Beyeh,et al.  Flying capsules: mass spectrometric detection of pyrogallarene and resorcinarene hexamers. , 2006, Angewandte Chemie.

[11]  K. Rissanen,et al.  Solvent exchange in thermally stable resorcinarene nanotubes. , 2006, Chemistry.

[12]  M. Beller,et al.  Base-catalyzed hydroamination of ethylene with diethylamine , 2005 .

[13]  K. Rissanen,et al.  C-Methyl resorcin[4]arene packing motifs with alkyl ammonium salts: From molecular capsules to channels and tubes , 2005 .

[14]  K. Rissanen Very large container molecules. , 2005, Angewandte Chemie.

[15]  M. Kanai,et al.  Recent progress in Lewis acid-Lewis base bifunctional asymmetric catalysis , 2005 .

[16]  K. Rissanen,et al.  Noncovalent π⋅⋅⋅π‐Stacked Exo‐Functional Nanotubes: Subtle Control of Resorcinarene Self‐Assembly , 2004 .

[17]  J. Rebek,et al.  Kinetics and thermodynamics of hexameric capsule formation. , 2004, Journal of the American Chemical Society.

[18]  Dario Braga,et al.  Crystal engineering, where from? Where to? , 2003, Chemical communications.

[19]  Y. Cohen,et al.  Spontaneous formation of hexameric resorcinarene capsule in chloroform solution as detected by diffusion NMR. , 2002, Journal of the American Chemical Society.

[20]  A. Corma,et al.  MCM-41 Heterogenized Chiral Amines as Base Catalysts for Enantioselective Michael Reaction , 2002 .

[21]  K. Rissanen,et al.  Encapsulation of diquats by resorcinarenes: a novel staggered anion-solvent mediated hydrogen bonded capsule. , 2002, Chemical communications.

[22]  J. Atwood,et al.  Hydrogen-bonded molecular capsules are stable in polar media. , 2001, Chemical communications.

[23]  R. Fröhlich,et al.  Self‐Assembly of 2,8,14,20‐Tetraisobutyl‐5,11,17,23‐tetrahydroxyresorc[4]arene , 1999 .

[24]  J. Sherman,et al.  Carceplexes and Hemicarceplexes. , 1999, Chemical reviews.

[25]  J. Rebek,et al.  Self-Assembling Capsules. , 1997, Chemical reviews.

[26]  J. Rebek,et al.  Entropically driven binding in a self-assembling molecular capsule , 1996, Nature.

[27]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[28]  V. Böhmer Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[29]  J. Lehn Perspectives in supramolecular chemistry: From molecular recognition towards self-organisation , 1994 .

[30]  C. Knobler,et al.  Constrictive and intrinsic binding in a hemicarcerand containing four portals , 1992 .

[31]  D. Cram Cavitands: Organic Hosts with Enforced Cavities , 1983, Science.

[32]  D. Cram,et al.  Cavitands: synthetic molecular vessels , 1982 .

[33]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[34]  J. Atwood,et al.  Inclusion complexes of 18-crown-6 and (Na+⊂[2.2.2]cryptand) in [C-methylcalix[4]resorcinarene-Hn], n⊕=⊕0, 1 , 2001 .

[35]  K. Rissanen,et al.  Encapsulation of Et3N+–H···OH2 in a hydrogen-bonded resorcarene capsule , 2000 .

[36]  K. Murayama Resorcin[4]arene dimer linked by eight water molecules and incorporating a tetraethylammonium ion: guest-driven capsule formation via cation–π interactions , 1998 .

[37]  Y. Struchkov,et al.  The preparation and X-ray structural study of complexes that catalyze isocyanate cyclotrimerization , 1993 .