A Sufficient Condition for Sets Hitting the Class of Read-Once Branching Programs of Width 3 - (Extended Abstract)

We characterize the hitting sets for read-once branching programs of width 3 by a so-called richness condition which is independent of a rather technical definition of branching programs. The richness property proves to be (in certain sense) necessary and sufficient condition for such hitting sets. In particular, we show that any rich set extended with all strings within Hamming distance of 3 is a hitting set for width-3 read-once branching programs. Applying this result to an example of an efficiently constructible rich set from our previous work we achieve an explicit polynomial time construction of an e -hitting set for read-once branching programs of width 3 with acceptance probability e >11/12.

[1]  Samuel D. Johnson Branching programs and binary decision diagrams: theory and applications by Ingo Wegener society for industrial and applied mathematics, 2000 408 pages , 2010, SIGA.

[2]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[3]  Stanislav Zák,et al.  Almost k-Wise Independent Sets Establish Hitting Sets for Width-3 1-Branching Programs , 2011, CSR.

[4]  Joshua Brody,et al.  The Coin Problem and Pseudorandomness for Branching Programs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[5]  Sorin C. Popescu,et al.  Lidar Remote Sensing , 2011 .

[6]  Zeev Dvir,et al.  Pseudorandomness for Width-2 Branching Programs , 2013, Theory Comput..

[7]  Pavel Pudlák,et al.  Pseudorandom generators for group products: extended abstract , 2011, STOC '11.

[8]  Juhani Karhumäki,et al.  Computer Science - Theory and Applications , 2014, Lecture Notes in Computer Science.

[9]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computations , 1990, STOC '90.

[10]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[11]  Anindya De,et al.  Pseudorandomness for Permutation and Regular Branching Programs , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[12]  Wiebe van der Hoek,et al.  SOFSEM 2007: Theory and Practice of Computer Science , 2007 .

[13]  Emanuele Viola,et al.  On beating the hybrid argument , 2012, ITCS '12.

[14]  Pavel Pudlák,et al.  Pseudorandom Generators for Group Products , 2010, Electron. Colloquium Comput. Complex..

[15]  Stanislav Zák,et al.  A Polynomial Time Constructible Hitting Set for Restricted 1-Branching Programs of Width 3 , 2007, SOFSEM.

[16]  Ran Raz,et al.  Pseudorandom Generators for Regular Branching Programs , 2014, SIAM J. Comput..

[17]  Avi Wigderson,et al.  Improved Derandomization of BPP Using a Hitting Set Generator , 1999, RANDOM-APPROX.

[18]  Madhur Tulsiani,et al.  Improved Pseudorandom Generators for Depth 2 Circuits , 2010, APPROX-RANDOM.

[19]  Paul Beame,et al.  Making Branching Programs Oblivious Requires Superlogarithmic Overhead , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[20]  David Zuckerman,et al.  Pseudorandom Generators for Polynomial Threshold Functions , 2013, SIAM J. Comput..

[21]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[22]  Stanislav Zák,et al.  A Polynomial Time Construction of a Hitting Set for Read-Once Branching Programs of Width 3 , 2010, Electron. Colloquium Comput. Complex..