Fabrication and Magnetic Anisotropy of the Epitaxial Fe Nanowires/Cu(001)/Si(001)

Fe nanowires 300 nm in width are fabricated from the epitaxial Fe film on Cu(001)/Si(001) by using laser interference lithography and chemical wet etching. The wire axis is parallel to the magnetic hard direction of the film. Scanning electron microscope and electron diffraction spectroscope spot profile analysis indicate that the isolated wires are successively fabricated. Although the Fe film shows intrinsic fourfold symmetry due to its crystallinity, the magnetic properties of the nanowires are strongly dominated by the uniaxial shape anisotropy.

[1]  A. Gobbi,et al.  Experimental magnetic study and evidence of the exchange bias effect in unidimensional Co arrays produced by interference lithography , 2007 .

[2]  P. Vavassori,et al.  Intrinsic magnetic anisotropy versus coupling in arrays of closely spaced circular Fe/GaAs(110) dots, patterned by focused ion beam , 2006 .

[3]  H. Lee,et al.  Fabrication of Epitaxial fcc Co/Cu Nanostructures/Si(001) , 2006 .

[4]  Sung-chul Shin,et al.  Strain and magnetic anisotropy of epitaxial Ni∕Cu(001) nanostructures , 2006 .

[5]  T. Shimizu,et al.  Epitaxial Growth of Cu Nanodot Arrays Using an AAO Template on a Si Substrate , 2006 .

[6]  Geoffrey S. D. Beach,et al.  Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires , 2005, Nature materials.

[7]  P. He,et al.  Nonlinear magnetization dynamics in a ferromagnetic nanowire with spin current , 2005 .

[8]  I. Z. Rahman,et al.  Analysis of magnetic interaction in Ni nanowire array grown using electrodeposition process , 2005 .

[9]  Y. Du,et al.  Geometry dependence of the annealing effect on the magnetic properties of Fe48Co52 nanowire arrays , 2005 .

[10]  J. Bland,et al.  Field sweep rate dependence of domain-wall speed distributions in a thin Ni80Fe20 film , 2004 .

[11]  U. Nowak,et al.  Domain wall mobility in nanowires: Transverse versus vortex walls , 2003, cond-mat/0310277.

[12]  S. Nasu,et al.  Real-space observation of current-driven domain wall motion in submicron magnetic wires. , 2003, Physical review letters.

[13]  W. Lew,et al.  Spin confinement by anisotropy modulation , 2002 .

[14]  U. Ebels,et al.  Microscopic magnetic relaxation processes in epitaxial Fe/GaAs(001) mesostructures , 2001 .

[15]  Harun H. Solak,et al.  Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography , 1999 .

[16]  S. Parkin,et al.  Micromagnetics of mesoscopic epitaxial (110) Fe elements with nanoshaped ends , 1999 .

[17]  Fuhrmann,et al.  Two-dimensional magnetic particles , 1998, Science.

[18]  U. Ramsperger,et al.  Magnetic properties of atomically-thin epitaxial dots and stripes with micrometer lateral size , 1998 .

[19]  J. Chapman,et al.  MICROMAGNETISM OF EPITAXIAL FE(001) ELEMENTS ON THE MESOSCALE , 1997 .

[20]  Claude Chappert,et al.  Nanoscale Magnetic Domains in Mesoscopic Magnets , 1996, Science.

[21]  K. Heinz,et al.  The structure of thin epitaxial Fe films on Cu(100) in the transition range fcc→bcc , 1994 .

[22]  Courtens,et al.  Magnetic coupling of structural microdomains in bcc Fe on Cu(001). , 1993, Physical review. B, Condensed matter.

[23]  Kota,et al.  Ferromagnetic-resonance studies of epitaxial Ni, Co, and Fe films grown on Cu(100)/Si(100). , 1993, Physical review. B, Condensed matter.

[24]  M. Wuttig,et al.  Growth, structure and morphology of ultrathin iron films on Cu(100) , 1992 .

[25]  W. J. Tabor,et al.  Pair-Preference and Site-Preference Models for Rare-Earth Iron Garnets Exhibiting Noncubic Magnetic Anisotropies , 1971 .

[26]  I. Schuller,et al.  Ordered magnetic nanostructures: fabrication and properties , 2003 .

[27]  Chin-An Chang Deposition of (100) Au, Ag, Pd, Pt, and Fe on (100) Si using different metal seed layers , 1991 .

[28]  Chin-An Chang,et al.  Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures , 1990 .