Large degree asymptotics of orthogonal polynomials with respect to an oscillatory weight on a bounded interval

Abstract We consider polynomials p n ω ( x ) that are orthogonal with respect to the oscillatory weight w ( x ) = e i ω x on [ − 1 , 1 ] , where ω > 0 is a real parameter. A first analysis of p n ω ( x ) for large values of ω was carried out in Asheim et al. (2014), in connection with complex Gaussian quadrature rules with uniform good properties in ω . In this contribution we study the existence, asymptotic behavior and asymptotic distribution of the roots of p n ω ( x ) in the complex plane as n → ∞ . The parameter ω grows with n linearly. The tools used are logarithmic potential theory and the S -property, together with the Riemann–Hilbert formulation and the Deift–Zhou steepest descent method.

[1]  A. S. Fokas,et al.  The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .

[2]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[3]  Daan Huybrechs,et al.  Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature , 2010, J. Approx. Theory.

[4]  Daan Huybrechs,et al.  Zero distribution of complex orthogonal polynomials with respect to exponential weights , 2013, J. Approx. Theory.

[5]  Daan Huybrechs,et al.  norges teknisk-naturvitenskapelige universitet Asymptotic analysis of numerical steepest descent with path approximations by , 2022 .

[6]  S. Suetin Strong asymptotics of polynomials orthogonal with respect to a complex weight , 2009 .

[7]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[9]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[10]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[11]  A. Aptekarev Sharp constants for rational approximations of analytic functions , 2002 .

[12]  Daan Huybrechs,et al.  Complex Gaussian quadrature for oscillatory integral transforms , 2013 .

[13]  Marnix Van Daele,et al.  Interpolatory Quadrature Rules for Oscillatory Integrals , 2012, Journal of Scientific Computing.

[14]  T. Trogdon,et al.  Lectures on Random Matrix Theory , 2015 .

[15]  Daan Huybrechs,et al.  Superinterpolation in Highly Oscillatory Quadrature , 2011, Foundations of Computational Mathematics.

[16]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[17]  E. Rakhmanov,et al.  Critical Measures, Quadratic Differentials, and Weak Limits of Zeros of Stieltjes Polynomials , 2009, 0902.0193.

[18]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[19]  E. Rakhmanov,et al.  Orthogonal Polynomials and $S$-curves , 2011, 1112.5713.

[20]  Arno B. J. Kuijlaars,et al.  S-curves in polynomial external fields , 2013, J. Approx. Theory.

[21]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[22]  Daan Huybrechs,et al.  Construction and implementation of asymptotic expansions for Jacobi–type orthogonal polynomials , 2015, Adv. Comput. Math..

[23]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, I , 1986 .

[24]  Elena Medina,et al.  Determination of S-curves with applications to the theory of non-Hermitian orthogonal polynomials , 2013, 1305.3028.

[25]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[26]  A. Martínez-Finkelshtein,et al.  Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters , 2013 .

[27]  Daan Huybrechs,et al.  A Gaussian quadrature rule for oscillatory integrals on a bounded interval , 2012, 1212.1293.