Hypergeometric supertrigonometric and superhyperbolic functions via Jacobi polynomials
暂无分享,去创建一个
[1] G. Szegö,et al. Inequalities for the zeros of Legendre polynomials and related functions , 1936 .
[2] C. Cesarano,et al. A Note on Legendre Polynomials , 2001 .
[3] F. Beukers. Legendre polynomials in irrationality proofs , 1980, Bulletin of the Australian Mathematical Society.
[4] H. Srivastava. Generating functions for Jacobi and Laguerre polynomials , 1969 .
[5] Scott T. Acton,et al. Region Based Segmentation in Presence of Intensity Inhomogeneity Using Legendre Polynomials , 2015, IEEE Signal Processing Letters.
[6] James Wan,et al. Generating functions of Legendre polynomials: A tribute to Fred Brafman , 2013, J. Approx. Theory.
[7] Lance L. Littlejohn,et al. Legendre polynomials, Legendre--Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression , 2002 .
[8] On a series of Rainville involving Legendre polynomials , 1957 .
[9] E Hille,et al. On Laguerre's Series: First Note. , 1926, Proceedings of the National Academy of Sciences of the United States of America.
[10] Cha'o-Kuang Chen,et al. Adomian decomposition method by Legendre polynomials , 2007 .
[11] L. Carlitz. Some generating functions of Weisner , 1961 .
[12] P. C. Mccarthy,et al. Generalized Legendre polynomials , 1993 .
[13] C. Jacobi,et al. Ueber Gauß neue Methode, die Werthe der Integrale näherungsweise zu finden. , 1826 .
[14] Rediscovering the contributions of Rodrigues on the representation of special functions , 2005 .
[15] J. Dougall,et al. The Product of Two Legendre Polynomials , 1953, Proceedings of the Glasgow Mathematical Association.
[16] Emran Tohidi,et al. Optimal control of nonlinear Volterra integral equations via Legendre polynomials , 2013, IMA J. Math. Control. Inf..
[17] F. Brafman. Some Generating Functions for Laguerre and Hermite Polynomials , 1957, Canadian Journal of Mathematics.
[18] Zhi-Hong Sun. Congruences concerning Legendre polynomials , 2010, 1012.3833.
[19] Saeed Kazem,et al. Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials , 2014 .
[20] G. N. Watson. Notes on Generating Functions of Polynomials: (1) Laguerre Polynomials , 1933 .
[21] Hari M. Srivastava,et al. Some operational techniques in the theory of special functions , 1973 .
[22] L. Carlitz. The generating function for the Jacobi polynomial , 1967 .
[23] T. Koornwinder. Jacobi functions as limit cases of q-ultraspherical polynomials , 1990 .
[24] K. Paton. Picture Description Using Legendre Polynomials , 1975 .
[25] Horst Bischof,et al. Modelling fingerprint ridge orientation using Legendre polynomials , 2010, Pattern Recognit..
[26] G. Darboux,et al. Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .
[27] H. Srivastava. Some biorthogonal polynomials suggested by the Laguerre polynomials , 1982 .
[28] J. L. Burchnall,et al. The Hypergeometric Identities of Cayley, Orr, and Bailey , 1948 .
[29] Mary Celine Fasenmyer. Some generalized hypergeometric polynomials , 1947 .
[30] Jet Wimp,et al. Expansions of hypergeometric functions in hypergeometric functions , 1961 .
[31] Ervin Feldheim. Contributi alla teoria delle funzioni ipergeometriche di più variabili , 1943 .
[32] L. Weisner. Group-theoretic origin of certain generating functions , 1955 .
[33] Saurabh Singh,et al. A stable algorithm for Hankel transforms using hybrid of Block-pulse and Legendre polynomials , 2010, Comput. Phys. Commun..
[34] Some generating functions for the Jacobi polynomials , 1992 .
[35] Bradley K. Alpert,et al. A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..
[36] J. Boyd. Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms , 2004 .
[37] K. Sogo. A Simple Derivation of Multivariable Hermite and Legendre Polynomials , 1996 .
[38] On a General Convergence Theorem, and the Theory of the Representation of a Function by Series of Normal Functions , 1908 .
[39] P. Turán,et al. On the zeros of the polynomials of Legendre , 1950 .
[40] H. Srivastava. A class of generating functions for generalized hypergeometric polynomials , 1971 .
[41] W. Al-salam,et al. Double Euler transformations of certain hypergeometric functions , 1963 .
[42] On the rate of convergence of Fourier-Legendre series of functions of bounded variation , 1981 .
[43] F. Whipple. A Group of Generalized Hypergeometric Series: Relations Between 120 Allied Series of the Type F(a,b,ce,f) , 1925 .
[44] Tamás Erdélyi,et al. Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .
[45] G. Szegö,et al. On an inequality of P. Turán concerning Legendre polynomials , 1948 .
[46] E. Hobson. On the Representation of a Function by a Series of Legendre's Functions , 1909 .
[47] LETTER TO THE EDITOR: Analytical results for a Bessel function times Legendre polynomials class integrals , 2006, math-ph/0602034.
[48] Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. , 1859 .
[49] Some polynomials defined by generating relations , 1975 .
[50] An extension of the Hille-Hardy formula , 1969 .
[51] T. W. Chaundy,et al. EXPANSIONS OF APPELL'S DOUBLE HYPERGEOMETRIC FUNCTIONS , 1940 .
[52] Alfred Wünsche,et al. Laguerre 2D-functions and their application in quantum optics , 1998 .
[53] On Jacobi polynomials , 1969 .