An Eilenberg Theorem for Words on Countable Ordinals
暂无分享,去创建一个
[1] J. Richard Büchi. Transfinite Automata Recursions and Weak Second Order Theory of Ordinals , 1990 .
[2] Thomas Wilke,et al. Temporal logic and semidirect products: an effective characterization of the until hierarchy , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[3] Jorge Almeida,et al. Finite Semigroups and Universal Algebra , 1995 .
[4] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[5] Yaacov Choueka. Finite Automata, Definable Sets, and Regular Expressions over omega^n-Tapes , 1978, J. Comput. Syst. Sci..
[6] Nicolas Bedon. Automata, Semigroups and Recognizability of Words on Ordinals , 1998, Int. J. Algebra Comput..
[7] Dominique Perrin,et al. Recent Results on Automata and Infinite Words , 1984, MFCS.
[8] Gareth S. Rohde,et al. Alternating automata and the temporal logic of ordinals , 1997 .
[9] S. Sieber. On a decision method in restricted second-order arithmetic , 1960 .
[10] Jean-Pierre Pécuchet. Variétés de Semis Groupes et Mots Infinis , 1986, STACS.
[11] Thomas Wilke. An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.
[12] Jean-Pierre Péchuchet. Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1986 .
[13] Dominique Perrin,et al. Varietes de Semigroupes et Mots Infinis , 1983, ICALP.
[14] André Arnold,et al. A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..
[15] Samuel Eilenberg. Automata, Languages and Machines, Vol. B , 1976 .