Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries

[1]  Ying-Jie Zhu,et al.  Microwave-assisted ionic liquid solvothermal rapid synthesis of hollow microspheres of alkaline earth metal fluorides (MF2, M = Mg, Ca, Sr) , 2012 .

[2]  Chang Liu,et al.  Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. , 2010, Chemical communications.

[3]  Jian Jiang,et al.  Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage , 2010 .

[4]  Xiaochuan Duan,et al.  Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. , 2009, ACS nano.

[5]  C. Ding,et al.  Electrostatic spray deposition of porous Fe2O3 thin films as anode material with improved electrochemical performance for lithium–ion batteries , 2009 .

[6]  V. McKee,et al.  Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation , 2009 .

[7]  D. He,et al.  Synthesis of α-Fe2O3 dendrites by a hydrothermal approach and their application in lithium-ion batteries , 2009 .

[8]  H. Duan,et al.  Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery , 2008 .

[9]  Changwen Hu,et al.  α-Fe2O3 Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage , 2008 .

[10]  Xinglong Gou,et al.  Facile Synthesis and Characterization of Iron Oxide Semiconductor Nanowires for Gas Sensing Application , 2008 .

[11]  Shudong Zhang,et al.  Hematite Hollow Spheres with a Mesoporous Shell: Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries , 2008 .

[12]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[13]  M. Armand,et al.  Building better batteries , 2008, Nature.

[14]  Ling Zhang,et al.  Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3: Preparation and Potential Application in Drug Delivery , 2008 .

[15]  Chusheng Chen,et al.  Nanosized α-Fe2O3 and Li–Fe composite oxide electrodes for lithium-ion batteries , 2007 .

[16]  Chun-hua Chen,et al.  Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries , 2007 .

[17]  D. Kovacheva,et al.  Iron-based composite oxides as alternative negative electrodes for lithium-ion batteries , 2007 .

[18]  J. Tarascon,et al.  Growth and Electrochemical Characterization versus Lithium of Fe3O4 Electrodes Made by Electrodeposition , 2006 .

[19]  Li Wan,et al.  Self‐Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment , 2006 .

[20]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[21]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[22]  Yan Yu,et al.  Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. , 2005, Angewandte Chemie.

[23]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[24]  L. Personnaz,et al.  Combined XRD, EXAFS, and Mössbauer Studies of the Reduction by Lithium of α ­ Fe2 O 3 with Various Particle Sizes , 2003 .

[25]  Jae-pyoung Ahn,et al.  Sol–Gel Mediated Synthesis of Fe2O3 Nanorods , 2003 .

[26]  J. Tarascon,et al.  Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles , 2003 .

[27]  J. Tarascon,et al.  An update on the reactivity of nanoparticles Co-based compounds towards Li , 2003 .

[28]  J. Tarascon,et al.  On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential , 2002 .

[29]  Yan Yu,et al.  Exploration of Alnico alloy as a magnetic electrode material for lithium-ion batteries , 2004 .

[30]  Jean-Marie Tarascon,et al.  Effect of Particle Size on Lithium Intercalation into α ­ Fe2 O 3 , 2003 .