Pro-atherogenic role of smooth muscle Nox4-based NADPH oxidase.

[1]  A. Shah,et al.  The NADPH oxidase Nox4 has anti-atherosclerotic functions. , 2015, European heart journal.

[2]  J. Keaney,et al.  Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions. , 2015, Free radical biology & medicine.

[3]  J. Sadoshima,et al.  Role of smooth muscle Nox4-based NADPH oxidase in neointimal hyperplasia. , 2015, Journal of molecular and cellular cardiology.

[4]  S. Allahverdian,et al.  Contribution of Intimal Smooth Muscle Cells to Cholesterol Accumulation and Macrophage-Like Cells in Human Atherosclerosis , 2014, Circulation.

[5]  Cynthia A. Reinhart-King,et al.  Arterial Stiffening Precedes Systolic Hypertension in Diet-Induced Obesity , 2013, Hypertension.

[6]  P. Hopkins,et al.  Molecular biology of atherosclerosis. , 2013, Physiological reviews.

[7]  K. Andrews,et al.  NADPH Oxidase 1 Plays a Key Role in Diabetes Mellitus–Accelerated Atherosclerosis , 2013, Circulation.

[8]  E. D. de Almeida,et al.  Evolution and involution of atherosclerosis and its relationship with vascular reactivity in hypercholesterolemic rabbits. , 2013, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[9]  K. Andrews,et al.  Nox 1 Plays a Key Role in Diabetes Accelerated Atherosclerosis , 2013 .

[10]  D. Simon,et al.  Inflammation and Vascular Injury , 2012 .

[11]  D. Simon Inflammation and vascular injury: basic discovery to drug development. , 2012, Circulation journal : official journal of the Japanese Circulation Society.

[12]  S. Allahverdian,et al.  Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. , 2012, Cardiovascular research.

[13]  A. Elmarakby YOUNG INVESTIGATOR AWARD LECTURE OF THE APS WATER AND ELECTROLYTE HOMEOSTASIS SECTION, 2011 Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease , 2012 .

[14]  Paul D. Jones,et al.  1-(1-acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea (AR9281) as a potent, selective, and orally available soluble epoxide hydrolase inhibitor with efficacy in rodent models of hypertension and dysglycemia. , 2011, Bioorganic & medicinal chemistry letters.

[15]  S. Chien,et al.  Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. , 2011, Physiological reviews.

[16]  R. Weisbrod,et al.  Upregulation of Nox4 by TGF&bgr;1 Oxidizes SERCA and Inhibits NO in Arterial Smooth Muscle of the Prediabetic Zucker Rat , 2010, Circulation research.

[17]  J. Visvader,et al.  Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. , 2010, Blood.

[18]  Michael D. Schneider,et al.  NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart , 2010, Proceedings of the National Academy of Sciences.

[19]  D. Giddens,et al.  A model of disturbed flow-induced atherosclerosis in mouse carotid artery by partial ligation and a simple method of RNA isolation from carotid endothelium. , 2010, Journal of visualized experiments : JoVE.

[20]  R. Brandes,et al.  Soluble Epoxide Hydrolase Deficiency Attenuates Neointima Formation in the Femoral Cuff Model of Hyperlipidemic Mice , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[21]  K. Griendling,et al.  NADPH Oxidases: Functions and Pathologies in the Vasculature , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[22]  R. D. Rudic,et al.  Soluble epoxide hydrolase inhibition modulates vascular remodeling. , 2010, American journal of physiology. Heart and circulatory physiology.

[23]  Craig R. Lee,et al.  Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. , 2010, Journal of molecular and cellular cardiology.

[24]  C. Sobey,et al.  Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. , 2010, American journal of physiology. Heart and circulatory physiology.

[25]  Xiaoyong Tong,et al.  NADPH oxidases are responsible for the failure of nitric oxide to inhibit migration of smooth muscle cells exposed to high glucose. , 2009, Free radical biology & medicine.

[26]  L. Sidossis,et al.  Noninvasive methods for assessing early markers of atherosclerosis: the role of body composition and nutrition , 2009, Current opinion in clinical nutrition and metabolic care.

[27]  B. Hammock,et al.  Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. , 2009, American journal of physiology. Renal physiology.

[28]  David Harrison,et al.  Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. , 2009, American journal of physiology. Heart and circulatory physiology.

[29]  D. Chen,et al.  Inhibition of soluble epoxide hydrolase attenuated atherosclerosis, abdominal aortic aneurysm formation and dyslipidemia in apolipoprotein E deficient mice infused with angiotensin II , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[30]  O. Fiehn,et al.  Soluble Epoxide Hydrolase Inhibitors Reduce the Development of Atherosclerosis in Apolipoprotein E-Knockout Mouse Model , 2008, Journal of cardiovascular pharmacology.

[31]  J. Liao,et al.  Deficiency of ROCK1 in bone marrow‐derived cells protects against atherosclerosis in LDLR−/− mice , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[32]  J. Keaney,et al.  Regulation of ROS signal transduction by NADPH oxidase 4 localization , 2008, The Journal of cell biology.

[33]  D. Pimentel,et al.  High glucose oxidizes SERCA cysteine-674 and prevents inhibition by nitric oxide of smooth muscle cell migration. , 2008, Journal of molecular and cellular cardiology.

[34]  D. Pimentel,et al.  Activation of Thromboxane Receptor Upregulates Interleukin (IL)-1β–Induced VCAM-1 Expression Through JNK Signaling , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[35]  P. Henke The Thromboxane A2 Receptor Antagonist S18886 Prevents Enhanced Atherogenesis Caused by Diabetes MellitusZuccollo A, Shi C, Mastroianni R, et al (Boston Univ; Institut de Recherches Internationales Servier, Courbevoie, France; Institut de Recherches Servier, Croissy, France; et al) Circulation 112:3 , 2007 .

[36]  J. Montani,et al.  PHENOTYPING THE LEVEL OF BLOOD PRESSURE BY TELEMETRY IN MICE , 2006, Clinical and experimental pharmacology & physiology.

[37]  Joshua R. Smith,et al.  Noninvasive Assessment of Preclinical Atherosclerosis , 2006, Vascular health and risk management.

[38]  Mengwei Zang,et al.  The Thromboxane A2 Receptor Antagonist S18886 Prevents Enhanced Atherogenesis Caused by Diabetes Mellitus , 2005, Circulation.

[39]  J. Liao,et al.  Inhibition of Vascular Smooth Muscle Cell Migration by Cytochrome P450 Epoxygenase-Derived Eicosanoids , 2002, Circulation research.

[40]  W. R. Taylor,et al.  Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis , 2002, Circulation.

[41]  D. Thompson,et al.  Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Holland,et al.  p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. , 2001, The Journal of clinical investigation.

[43]  B D Hammock,et al.  Soluble Epoxide Hydrolase Regulates Hydrolysis of Vasoactive Epoxyeicosatrienoic Acids , 2000, Circulation research.

[44]  K. Ley,et al.  Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. , 1999, Science.

[45]  S. Heath,et al.  Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[46]  M. Creager,et al.  -.____----.---_-Impaired Nitric Oxide-Mediated Vasodilation in Patients With Non-Insulin-Dependent Diabetes Mellitw , 2016 .

[47]  R. Ross Atherosclerosis: current understanding of mechanisms and future strategies in therapy. , 1993, Transplantation proceedings.