Improving PARSEC models for very low mass stars

Many stellar models present difficulties in reproducing basic observational relations of very low mass stars (VLMS), including the mass--radius relation and the optical colour--magnitudes of cool dwarfs. Here, we improve PARSEC models on these points. We implement the T--tau relations from PHOENIX BT-Settl model atmospheres as the outer boundary conditions in the PARSEC code, finding that this change alone reduces the discrepancy in the mass--radius relation from 8 to 5 per cent. We compare the models with multi--band photometry of clusters Praesepe and M67, showing that the use of T--tau relations clearly improves the description of the optical colours and magnitudes. But anyway, using both Kurucz and PHOENIX model spectra, model colours are still systematically fainter and bluer than the observations. We then apply a shift to the above T--tau relations, increasing from 0 at T_eff = 4730 K to ~14% at T_eff = 3160 K, to reproduce the observed mass--radius radius relation of dwarf stars. Taking this experiment as a calibration of the T--tau relations, we can reproduce the optical and near infrared CMDs of low mass stars in the old metal--poor globular clusters NGC6397 and 47Tuc, and in the intermediate--age and young solar--metallicity open clusters M67 and Praesepe. Thus, we extend PARSEC models using this calibration, providing VLMS models more suitable for the lower main sequence stars over a wide range of metallicities and wavelengths. Both sets of models are available on PARSEC webpage.

[1]  Howard Isaacson,et al.  An Earth-Sized Planet in the Habitable Zone of a Cool Star , 2014, Science.

[2]  Spectroscopic and photometric analysis of three detached binary systems: AP And, VZ Cep and V881 Per , 2014 .

[3]  M. R. Haas,et al.  MASSES, RADII, AND ORBITS OF SMALL KEPLER PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS , 2014, 1401.4195.

[4]  Eugene Magnier,et al.  MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1 , 2014, 1401.1508.

[5]  J. Simmerer,et al.  DETAILED ABUNDANCES FOR A LARGE SAMPLE OF GIANT STARS IN THE GLOBULAR CLUSTER 47 TUCANAE (NGC 104) , 2013, 1311.1541.

[6]  D. Bayliss,et al.  The mass–radius relationship for very low mass stars: four new discoveries from the HATSouth Survey , 2013, 1310.7591.

[7]  G. Torres,et al.  ABSOLUTE PROPERTIES OF THE TRIPLE STAR HP AURIGAE , 2013, 1310.3856.

[8]  G. Feiden,et al.  MAGNETIC INHIBITION OF CONVECTION AND THE FUNDAMENTAL PROPERTIES OF LOW-MASS STARS. I. STARS WITH A RADIATIVE CORE , 2013, 1309.0033.

[9]  P. Demarque,et al.  THE RADIUS DISCREPANCY IN LOW-MASS STARS: SINGLE VERSUS BINARIES , 2013, 1308.5558.

[10]  Ö. Çakırlı NSVS 07394765: A new low-mass eclipsing binary below 0.6 M⊙ , 2013 .

[11]  J. Anderson,et al.  An age difference of two billion years between a metal-rich and a metal-poor globular cluster , 2013, Nature.

[12]  S. O. Kepler,et al.  Multichromatic colour–magnitude diagrams of the globular cluster NGC 6366 , 2013, 1307.4499.

[13]  A. Robin,et al.  The effective temperature scale of M dwarfs , 2013, 1304.4072.

[14]  B. Sipocz,et al.  A highly unequal-mass eclipsing M-dwarf binary in the WFCAM Transit Survey , 2013, 1303.0945.

[15]  A. Santerne,et al.  CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star - Discovered in the CoRoT lightcurves , 2013, 1302.5830.

[16]  D. Mullan,et al.  MAGNETIC EFFECTS AND OVERSIZED M DWARFS IN THE YOUNG OPEN CLUSTER NGC 2516 , 2013, 1302.2941.

[17]  G. S. Burley,et al.  THE CLUSTER AGES EXPERIMENT (CASE). V. ANALYSIS OF THREE ECLIPSING BINARIES IN THE GLOBULAR CLUSTER M4 , 2013, 1301.2946.

[18]  Stephen T. Bryson,et al.  Dynamical masses, absolute radii and 3D orbits of the triply eclipsing star HD 181068 from Kepler photometry , 2012, 1210.1061.

[19]  R. Wade,et al.  KEPLER STUDIES OF LOW-MASS ECLIPSING BINARIES. I. PARAMETERS OF THE LONG-PERIOD BINARY KIC 6131659 , 2012, 1211.1068.

[20]  S. Bloemen,et al.  PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TrES-2 SYSTEM , 2012, 1210.4592.

[21]  Ž. Ivezić,et al.  Galactic Stellar Populations in the Era of the Sloan Digital Sky Survey and Other Large Surveys , 2012, 1308.6386.

[22]  M. Hilker,et al.  ESO VISTA Public Surveys - A Status Overview , 2012 .

[23]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[24]  Russel J. White,et al.  STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS , 2012, 1208.2431.

[25]  C. Copperwheat,et al.  An accurate mass and radius measurement for an ultracool white dwarf , 2012, 1207.5393.

[26]  Gregory A. Feiden,et al.  REEVALUATING THE MASS–RADIUS RELATION FOR LOW-MASS, MAIN-SEQUENCE STARS , 2012, 1207.3090.

[27]  J. Haislip,et al.  Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IV. A 0.61 + 0.45 M_sun binary in a multiple system , 2012, 1206.2862.

[28]  B. Sipocz,et al.  Discovery and characterization of detached M dwarf eclipsing binaries in the WFCAM Transit Survey , 2012, 1206.2773.

[29]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  A. Dotter,et al.  A DEEP, WIDE-FIELD, AND PANCHROMATIC VIEW OF 47 Tuc AND THE SMC WITH HST: OBSERVATIONS AND DATA ANALYSIS METHODS , 2011, 1112.1426.

[31]  P. Kerry,et al.  A precision study of two eclipsing white dwarf plus M dwarf binaries , 2011, 1111.5694.

[32]  L. Buchhave,et al.  KIC 1571511B: a benchmark low-mass star in an eclipsing binary system in the Kepler field , 2011, 1111.2578.

[33]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[34]  P. Berlind,et al.  LSPM J1112+7626: DETECTION OF A 41 DAY M-DWARF ECLIPSING BINARY FROM THE MEARTH TRANSIT SURVEY , 2011, 1109.2055.

[35]  A. Drake,et al.  The shortest period detached white dwarf + main-sequence binary , 2011, 1108.5029.

[36]  Italy,et al.  Chemical abundance analysis of the open clusters Berkeley 32, NGC 752, Hyades, and Praesepe , 2011, 1107.2242.

[37]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[38]  Jie Li,et al.  KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars , 2011, Science.

[39]  Models of Stars, Brown Dwarfs and Exoplanets , 2011 .

[40]  Adam L. Kraus,et al.  THE MASS–RADIUS(–ROTATION?) RELATION FOR LOW-MASS STARS , 2010, 1011.2757.

[41]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[42]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[43]  S. Lucatello,et al.  Properties of stellar generations in globular clusters and relations with global parameters , 2010, 1003.1723.

[44]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[45]  L. Marschall,et al.  ABSOLUTE DIMENSIONS OF THE G7+K7 ECLIPSING BINARY STAR IM VIRGINIS: DISCREPANCIES WITH STELLAR EVOLUTION MODELS , 2009, 0910.4458.

[46]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[47]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[48]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[49]  C. Blake,et al.  GJ 3236: A NEW BRIGHT, VERY LOW MASS ECLIPSING BINARY SYSTEM DISCOVERED BY THE MEarth OBSERVATORY , 2009, 0906.4365.

[50]  M. Everett,et al.  MASS AND RADIUS DETERMINATIONS FOR FIVE TRANSITING M-DWARF STARS , 2009, 0906.2207.

[51]  W. Chaplin,et al.  FRESH INSIGHTS ON THE STRUCTURE OF THE SOLAR CORE , 2009, 0905.0651.

[52]  A. Dotter,et al.  DEEP 2MASS PHOTOMETRY OF M67 AND CALIBRATION OF THE MAIN-SEQUENCE J − KS COLOR DIFFERENCE AS AN AGE INDICATOR , 2009, 0904.2907.

[53]  I. Kamp,et al.  The solar photospheric nitrogen abundance - Analysis of atomic transitions with 3D and 1D model atmospheres , 2009, 0903.3406.

[54]  F. V. Leeuwen,et al.  Parallaxes and proper motions for 20 open clusters as based on the new Hipparcos catalogue , 2009, 0902.1039.

[55]  E. Guinan,et al.  ABSOLUTE PROPERTIES OF THE LOW-MASS ECLIPSING BINARY CM DRACONIS , 2008, 0810.1541.

[56]  D. York,et al.  Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowded-Field Photometry and Cluster Fiducial Sequences in ugriz , 2008, 0808.0001.

[57]  L. Casagrande,et al.  M dwarfs: effective temperatures, radii and metallicities , 2008, 0806.2471.

[58]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[59]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[60]  Astronomy Department,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane I. From the ZAMS to the TP-A , 2008, 0803.1460.

[61]  J. Anderson,et al.  Ground-based CCD astrometry with wide-field imagers - II. A star catalog for M 67: WFI@2.2 m MPG/ESO astrometry, FLAMES@VLT radial velocities , 2008, 0803.0004.

[62]  A. Dotter,et al.  DEEP ADVANCED CAMERA FOR SURVEYS IMAGING IN THE GLOBULAR CLUSTER NGC 6397: THE CLUSTER COLOR–MAGNITUDE DIAGRAM AND LUMINOSITY FUNCTION , 2007, 0708.4030.

[63]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[64]  B. Edvardsson,et al.  On the Use of Blanketed Atmospheres as Boundary Conditions for Stellar Evolutionary Models , 2007, 0708.1188.

[65]  Hee-Won Lee,et al.  The Seventh Pacific Rim Conference on Stellar Astrophysics , 2007 .

[66]  M. Everett,et al.  The Mass and Radius of the Unseen M Dwarf Companion in the Single-Lined Eclipsing Binary HAT-TR-205-013 , 2007, 0704.0059.

[67]  J. A. Smith,et al.  LP 133-373: A New Chromospherically Active Eclipsing dMe Binary with a Distant, Cool White Dwarf Companion , 2007, astro-ph/0703061.

[68]  South Africa,et al.  The mass and radius of the M-dwarf in the short-period eclipsing binary RR Caeli , 2007, astro-ph/0702005.

[69]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[70]  C. Moutou,et al.  Radius and mass of a transiting M dwarf near the hydrogen-burning limit. OGLE-TR-123 , 2006 .

[71]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[72]  L. Pasquini,et al.  Element abundances of unevolved stars in the open cluster M 67 , 2006, astro-ph/0601239.

[73]  Leslie Hebb,et al.  Photometric Monitoring of Open Clusters. II. A New M Dwarf Eclipsing Binary System in the Open Cluster NGC 1647 , 2006 .

[74]  D. Queloz,et al.  A planet-sized transiting star around OGLE-TR-122. Accurate mass and radius near the hydrogen-burning limit , 2005, astro-ph/0501611.

[75]  F. Bouchy,et al.  Doppler follow-up of OGLE planetary transit candidates in Carina , 2005, astro-ph/0501615.

[76]  P. Stetson,et al.  On the Old Open Clusters M67 and NGC 188: Convective Core Overshooting, Color‐Temperature Relations, Distances, and Ages , 2004 .

[77]  E. Sandquist A high relative precision colour-magnitude diagram of M67 , 2003, astro-ph/0308547.

[78]  B. Freytag,et al.  in Modelling of Stellar Atmospheres , 2004 .

[79]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[80]  S. Majewski,et al.  Star Counts Redivivus. IV. Density Laws through Photometric Parallaxes , 2002, astro-ph/0206323.

[81]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[82]  I. Reid,et al.  Astrometry and Photometry for Cool Dwarfs and Brown Dwarfs , 2002, astro-ph/0205050.

[83]  G. Chabrier The Galactic disk mass-budget : I. stellar mass-function and density , 2001, astro-ph/0107018.

[84]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[85]  M. Weinberg,et al.  Stellar Populations in the Large Magellanic Cloud from 2MASS , 2000, astro-ph/0003012.

[86]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[87]  M. Marley,et al.  From Giant Planets to Cool Stars , 1999 .

[88]  P. Hauschildt,et al.  MODEL ATMOSPHERES OF VERY LOW MASS STARS AND BROWN DWARFS , 1997 .

[89]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[90]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[91]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[92]  F. Allard,et al.  Model atmospheres for M (sub)dwarf stars. 1: The base model grid , 1995, astro-ph/9601150.

[93]  S. Leggett Infrared Colors of Low-Mass Stars , 1992 .

[94]  D. G. Hummer,et al.  The equation of state for stellar envelopes. IV - Thermodynamic quantities and selected ionization fractions for six elemental mixes , 1990 .

[95]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[96]  R. Probst,et al.  Very Low Mass Stars , 1987 .

[97]  K. Swamy Profiles of strong lines in K- dwarfs , 1966 .

[98]  L. G. Henyey,et al.  A NEW METHOD OF AUTOMATIC COMPUTATION OF STELLAR EVOLUTION , 1964 .