On the Time Variable Rotation Measure in the Core Region of Markarian 421

In this conference contribution, we discuss and interpret the time variable rotation measure (RM) detected in the core region of the TeV blazar Markarian 421 (Mrk 421). We monitored Mrk 421 during 2011 with one observing run per month at 15, 24, and 43 GHz with the American Very Long Baseline Array. We explore the possible connection between the RM and the accretion rate, and we investigate the Faraday screen properties and its location with respect to the jet emitting region. Among the various scenarios, the jet sheath is the most promising candidate for being the main source of Faraday rotation. We interpret the RM sign reversals observed during the one-year monitoring within the context of the magnetic tower models by invoking the presence of two nested helical magnetic fields in the relativistic jet with opposite helicities, originating through the Poynting–Robertson cosmic battery effect. The net observed RM values result from the relative contribution of both inner and outer helical fields.

[1]  R. Narayan,et al.  Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes , 2017, 1705.11021.

[2]  R. Lico,et al.  Interpreting the time variable RM observed in the core region of the TeV blazar Mrk 421 , 2017, 1704.06133.

[3]  K. Sokolovsky,et al.  Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets , 2017, 1701.00271.

[4]  D. Kazanas,et al.  Dominance of outflowing electric currents on decaparsec to kiloparsec scales in extragalactic jets , 2016, 1605.08991.

[5]  E. Ros,et al.  Spectral evolution of flaring blazars from numerical simulations , 2016, 1601.03181.

[6]  Uwe Bach,et al.  PROBING THE INNERMOST REGIONS OF AGN JETS AND THEIR MAGNETIC FIELDS WITH RADIOASTRON. I. IMAGING BL LACERTAE AT 21 μas RESOLUTION , 2015, 1512.04690.

[7]  M. Johnson,et al.  PROBING THE PARSEC-SCALE ACCRETION FLOW OF 3C 84 WITH MILLIMETER WAVELENGTH POLARIMETRY , 2014, 1410.5887.

[8]  M. Kino,et al.  Very Long Baseline polarimetry and the γ-ray connection in Markarian 421 during the broadband campaign in 2011 , 2014, 1410.0884.

[9]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[10]  M. Kino,et al.  The TeV blazar Markarian 421 at the highest spatial resolution , 2013, 1310.4973.

[11]  M. Lister,et al.  ERRATUM: “MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS” (2012, AJ, 144, 105) , 2013 .

[12]  C. Coughlan,et al.  Connecting magnetic towers with Faraday rotation gradients in active galactic nuclei jets , 2013, 1302.1346.

[13]  M. Kino,et al.  VLBA monitoring of Mrk 421 at 15 GHz and 24 GHz during 2011 , 2012, 1208.5853.

[14]  A. Marscher,et al.  ON THE SOURCE OF FARADAY ROTATION IN THE JET OF THE RADIO GALAXY 3C 120 , 2011, 1102.1943.

[15]  W. Alef,et al.  DiFX-2: A More Flexible, Efficient, Robust, and Powerful Software Correlator , 2011, 1101.0885.

[16]  M. Inoue,et al.  MULTI-FREQUENCY POLARIMETRY TOWARD S5 0836+710: A POSSIBLE SPINE–SHEATH STRUCTURE FOR THE JET , 2010 .

[17]  Signatures of Relativistic Helical Motion in the Rotation Measures of AGN Jets , 2009, 0908.2999.

[18]  D. Kazanas,et al.  THE INVARIANT TWIST OF MAGNETIC FIELDS IN THE RELATIVISTIC JETS OF ACTIVE GALACTIC NUCLEI , 2009, 0907.3619.

[19]  D. Gabuzda,et al.  Surprising evolution of the parsec-scale Faraday Rotation gradients in the jet of the BL Lac object B1803+784 , 2009, 0905.2368.

[20]  S. O’Sullivan,et al.  Three-dimensional magnetic field structure of six parsec-scale active galactic nuclei jets , 2008, 0811.4426.

[21]  M. Inoue,et al.  Time Variation of the Rotation Measure Gradient in the 3C 273 Jet , 2008, 0806.4231.

[22]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[23]  S. Mineshige,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 7/8/03 MAGNETOHYDRODYNAMICAL ACCRETION FLOWS: FORMATION OF MAGNETIC TOWER JET AND SUBSEQUENT QUASI-STEADY STATE , 2003 .

[24]  A View through Faraday’s Fog. II. Parsec-Scale Rotation Measures in 40 Active Galactic Nuclei , 2003, astro-ph/0405534.

[25]  J. Wardle,et al.  Theoretical Models for Producing Circularly Polarized Radiation in Extragalactic Radio Sources , 2003, astro-ph/0305136.

[26]  S. Iguchi,et al.  A Helical Magnetic Field in the jet of 3C 273(Session 1:Astrophysical Jets,High-Energy Emission from Accreting Compact Objects,Korea-Japan Seminar) , 2002, astro-ph/0205497.

[27]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[28]  D. Kazanas,et al.  A Cosmic Battery , 1998, astro-ph/9808223.

[29]  M. Rees,et al.  Thermal material in relativistic jets , 1998 .

[30]  A. Marscher,et al.  Hydrodynamical Models of Superluminal Sources , 1997 .

[31]  D. Lynden-Bell Magnetic collimation by accretion discs of quasars and stars , 1996 .

[32]  A. Marscher,et al.  Parsec-Scale Synchrotron Emission from Hydrodynamic Relativistic Jets in Active Galactic Nuclei , 1995 .

[33]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[34]  S. Odell,et al.  Transfer of polarized radiation in self-absorbed synchrotron sources. I - Results for a homogeneous source. [astrophysics , 1977 .

[35]  J. Whiteoak,et al.  The Polarization of Cosmic Radio Waves , 1966 .