Conformal Ink-Jet Printed $C$-Band Phased-Array Antenna Incorporating Carbon Nanotube Field-Effect Transistor Based Reconfigurable True-Time Delay Lines

We present a conformal ink-jet printed 2-bit four-element phased-array antenna (PAA) without any lithography process. Passive and active components, such as microstrip transmission lines, phase shifters, and RF power distribution networks are all developed adopting a room-temperature printing process. The PAA working at 5.2 GHz is printed on flexible DuPont Kapton flexible printed circuit polyimide film to demonstrate the conformal nature. High-speed carbon-nanotube-based field-effect transistors (FETs) function as switches to route the RF signal go through different segments of the true-time delay lines. The FET switch exhibits an on-off ratio of over 1000 and current of 3.6 mA is obtained at a low source-drain bias of 0.8 V. The 2-bit azimuth beamsteering angles of the PAA are measured and confirmed to agree well with simulation values.

[2]  L. R. Whicker Active phased array technology using coplanar packaging technology , 1995 .

[3]  Ray T. Chen,et al.  All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz , 2008 .

[4]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[5]  J. A. Navarro,et al.  Low cost and compact active integrated antenna transceiver for system applications , 1995, IMS 1995.

[6]  L. Del Castillo,et al.  An active membrane phased array radar , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[7]  M. Lou,et al.  An inflatable L-band microstrip SAR array , 1998, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36.

[8]  Ray T. Chen,et al.  Fully printed phased-array antenna for space communications , 2009, Defense + Commercial Sensing.

[9]  Soon-Ik Jeon,et al.  A new active phased array antenna for mobile direct broadcasting satellite reception , 2000 .

[10]  J. Rogers,et al.  Theory and practice of “Striping” for improved ON/OFF Ratio in carbon nanonet thin film transistors , 2009 .

[11]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[12]  H. L. Hartnagel,et al.  The Design and Performance of Three-Line Microstrip Couplers , 1976 .

[13]  Gabriel M. Rebeiz,et al.  W-Band finite ground coplanar waveguide (FGGPW) to microstrip line transition , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[14]  A. Schroth,et al.  Antenna and receiver system with digital beamforming for satellite navigation and communications , 2003 .

[15]  A. K. Agrawal,et al.  Design and performance of octave S/C band MMIC T/R modules for multi-function phased arrays , 1991 .

[16]  Y. Iyama,et al.  Ultra small size X band MMIC T/R module for active phased array , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[17]  Y. Mancuso,et al.  T/R- Modules Technological and Technical Trends for Phased Array Antennas , 2006, IMS 2006.

[18]  A. Moussessian,et al.  Thin-membrane aperture-coupled L-band patch antenna , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[19]  R. Schropp,et al.  Stable amorphous-silicon thin-film transistors , 1997 .