Spectral extrema of Ks, t-minor free graphs - On a conjecture of M. Tait

Minors play an important role in extremal graph theory and spectral extremal graph theory. Tait [The Colin de Verdière parameter, excluded minors, and the spectral radius, J. Combin. Theory Ser. A 166 (2019) 42–58] determined the maximum spectral radius and characterized the unique extremal graph for Kr-minor free graphs of sufficiently large order n, he also made great progress onKs,t-minor free graphs and posed a conjecture: Let 2 ≤ s ≤ t and n − s + 1 = pt + q, where n is sufficiently large and 1 ≤ q ≤ t. Then Ks−1∇(pKt∪Kq) is the unique extremal graph with the maximum spectral radius over all n-vertex Ks,t-minor free graphs. In this paper, Tait’s conjecture is completely solved. We also determine the maximum spectral radius and its extremal graphs for n-vertex K1,tminor free graphs. To prove our results, some spectral and structural tools, such as, local edge maximality, local degree sequence majorization, double eigenvectors transformation, are used to deduce structural properties of extremal graphs.

[1]  V. Nikiforov,et al.  The spectral radius of graphs with no K2,t minor , 2017, 1703.01839.

[2]  Xinmin Hou,et al.  The spectral radius of graphs without long cycles , 2017, Linear Algebra and its Applications.

[3]  Mingqing Zhai,et al.  Spectral extrema of graphs: Forbidden hexagon , 2020, Discret. Math..

[4]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[5]  Wenshui Lin,et al.  On the Maximum Harary Spectral Radius of Graphs with Given Matching Number , 2018 .

[6]  Michael Tait,et al.  The Maximum Spectral Radius of Graphs Without Friendship Subgraphs , 2020, Electron. J. Comb..

[7]  Mark N. Ellingham,et al.  The Spectral Radius of Graphs on Surfaces , 2000, J. Comb. Theory, Ser. B.

[8]  Hong Yuan On the Spectral Radius and the Genus of Graphs , 1995, J. Comb. Theory, Ser. B.

[9]  Baofeng Wu,et al.  The spectral radius of trees on k pendant vertices , 2005 .

[10]  Vladimir Nikiforov,et al.  Bounds on graph eigenvalues II , 2006, math/0612461.

[11]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[12]  Xing Peng,et al.  Extensions of the Erdős–Gallai theorem and Luo’s theorem , 2019, Combinatorics, Probability and Computing.

[13]  Paul D. Seymour,et al.  Spanning trees with many leaves , 2001, J. Graph Theory.

[14]  Ming-Zhu Chen,et al.  On the spectral radius of graphs without a star forest , 2021, Discret. Math..

[15]  Yuan Hong,et al.  Tree-width, clique-minors, and eigenvalues , 2004, Discret. Math..

[16]  Hong Yuan Upper Bounds of the Spectral Radius of Graphs in Terms of Genus, , 1998, J. Comb. Theory, Ser. B.

[17]  Béla Bollobás,et al.  Cliques and the spectral radius , 2007, J. Comb. Theory, Ser. B.

[18]  David W. Lewis,et al.  Matrix theory , 1991 .

[19]  B. Wang,et al.  Proof of a conjecture on the spectral radius of C4-free graphs , 2012 .

[20]  Xiao-Dong Zhang,et al.  Spectral Extremal Results with Forbidding Linear Forests , 2018, Graphs Comb..

[21]  V. Nikiforov A contribution to the Zarankiewicz problem , 2009, 0903.5350.

[22]  László Babai,et al.  Spectral Extrema for Graphs: The Zarankiewicz Problem , 2009, Electron. J. Comb..

[23]  Josef Leydold,et al.  Graphs with Given Degree Sequence and Maximal Spectral Radius , 2008, Electron. J. Comb..

[24]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[25]  L. Lovász,et al.  The Colin de Verdière parameter , 1999 .

[26]  Michael Tait,et al.  Three conjectures in extremal spectral graph theory , 2016, J. Comb. Theory, Ser. B.

[27]  Bing Wang,et al.  Extremal spectral radius of K3,3/K2,4-minor free graphs , 2021 .

[28]  Vladimir Nikiforov,et al.  A spectral condition for odd cycles in graphs , 2007, 0707.4499.

[29]  G. Royle,et al.  A Conjecture on the Maximum Value of the Principal Eigenvalue of a Planar Graph , 2010 .

[30]  A complete solution to the Cvetković–Rowlinson conjecture , 2021, J. Graph Theory.

[31]  M. Chudnovsky The edge-density for K 2 , t minors , 2008 .

[32]  D. Cao,et al.  The spectral radius of a planar graph , 1993 .

[33]  Michael Tait,et al.  The Colin de Verdière parameter, excluded minors, and the spectral radius , 2017, J. Comb. Theory, Ser. A.

[34]  Zdenek Dvorak,et al.  Spectral radius of finite and infinite planar graphs and of graphs of bounded genus , 2009, J. Comb. Theory, Ser. B.

[35]  D. Cvetkovic,et al.  The largest eigenvalue of a graph: A survey , 1990 .

[36]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.