Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media

Abstract The prediction of fluid- and moisture-driven crack propagation in deforming porous media has achieved increasing interest in recent years, in particular with regard to the modeling of hydraulic fracturing , the so-called “ fracking ”. Here, the challenge is to link at least three modeling ingredients for (i) the behavior of the solid skeleton and fluid bulk phases and their interaction, (ii) the crack propagation on not a priori known paths and (iii) the extra fluid flow within developed cracks. To this end, a macroscopic framework is proposed for a continuum phase field modeling of fracture in porous media. It provides a rigorous geometric approach to a diffusive crack modeling based on the introduction of a constitutive balance equation for a regularized crack surface and its modular linkage to a Darcy–Biot-type bulk response of hydro-poro-elasticity. The approach overcomes difficulties associated with the computational realization of sharp crack discontinuities, in particular when it comes to complex crack topologies including branching. A modular concept is outlined for linking of the diffusive crack modeling with the hydro-poro-elastic response of the porous bulk material. This includes a generalization of crack driving forces from energetic definitions towards threshold-based criteria in terms of the effective stress related to the solid skeleton of a fluid-saturated porous medium. Furthermore, a Poiseuille-type constitutive continuum modeling of the extra fluid flow in developed cracks is suggested based on a deformation-dependent permeability, that is scaled by a characteristic length. This proposed modular model structure is exploited in the numerical implementation by constructing a robust finite element method, based on an algorithmic decoupling of updates for the crack phase field and the state variables of the hydro-poro-elastic bulk response. We demonstrate the performance of the phase field formulation of fracture for a spectrum of model problems of hydraulic fracture. A slight modification of the framework allows the simulation of drying-caused crack patterns in partially saturated capillar-porous media.

[1]  E. Wilson,et al.  FINITE-ELEMENT ANALYSIS OF SEEPAGE IN ELASTIC MEDIA , 1969 .

[2]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[3]  René de Borst,et al.  A large deformation formulation for fluid flow in a progressively fracturing porous material , 2013 .

[4]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[5]  Jean-Jacques Marigo,et al.  Morphogenesis and propagation of complex cracks induced by thermal shocks , 2013 .

[6]  Olivier Coussy,et al.  Mechanics of porous continua , 1995 .

[7]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[8]  N. C. Huang,et al.  Hydraulic fracturing of a saturated porous medium-II: Special cases , 1985 .

[9]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[10]  Emmanuel M Detournay,et al.  Propagation of a penny-shaped hydraulic fracture parallel to the free-surface of an elastic half-space , 2002 .

[11]  de R René Borst,et al.  Two-Dimensional Mode I Crack Propagation in Saturated Ionized Porous Media Using Partition of Unity Finite Elements , 2013 .

[12]  Jose Adachi,et al.  Computer simulation of hydraulic fractures , 2007 .

[13]  M. Biot Theory of finite deformations of porous solids , 1972 .

[14]  Christian Miehe,et al.  Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids , 2015 .

[15]  Bernhard A. Schrefler,et al.  A method for 3-D hydraulic fracturing simulation , 2012, International Journal of Fracture.

[16]  B. Schrefler,et al.  Hydraulic fracturing and its peculiarities , 2014 .

[17]  D. S. Drumheller,et al.  Theories of immiscible and structured mixtures , 1983 .

[18]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[19]  Emmanuel M Detournay,et al.  A fixed grid algorithm for simulating the propagation of a shallow hydraulic fracture with a fluid lag , 2011 .

[20]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[21]  I. N. Sneddon The distribution of stress in the neighbourhood of a crack in an elastic solid , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[23]  A. Rybicki,et al.  Drying stress formation by inhomogeneous moisture and temperature distribution , 1996 .

[24]  Chun Fai Leung,et al.  Hybrid and enhanced finite element methods for problems of soil consolidation , 2007 .

[25]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[26]  Thomas J. Boone,et al.  A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .

[27]  R. Lewis,et al.  Drying-induced stresses in porous bodies , 1977 .

[28]  Allan M. Rubin,et al.  Propagation of Magma-Filled Cracks , 1995 .

[29]  A. Cheng,et al.  Fundamentals of Poroelasticity , 1993 .

[30]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[31]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[32]  Julien Réthoré,et al.  A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks , 2008 .

[33]  Zdeněk P. Bažant,et al.  Why Fracking Works , 2014 .

[34]  C. Miehe,et al.  Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture , 2015 .

[35]  George W. Scherer,et al.  Theory of Drying , 1990 .

[36]  S. Whitaker Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying , 1977 .

[37]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[38]  N. C. Huang,et al.  Hydraulic fracturing of a saturated porous medium-I: General theory , 1985 .

[39]  K. Runesson,et al.  Embedded localization band in undrained soil based on regularized strong discontinuity theory and FE-analysis , 1996 .

[40]  Emmanuel M Detournay,et al.  Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: Asymptotic solutions , 2002 .

[41]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[42]  Adler,et al.  Fractured Porous Media , 2012 .

[43]  Cv Clemens Verhoosel,et al.  A phase‐field model for cohesive fracture , 2013 .

[44]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[45]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[46]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[47]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[48]  S. Kowalski,et al.  Thermomechanics of Drying Processes , 2003 .

[49]  Jan Carmeliet,et al.  A coupled discrete-continuum approach to simulate moisture effects on damage processes in porous materials , 2006 .

[50]  L. Laloui,et al.  Formation of drying crack patterns in soils: a deterministic approach , 2013 .

[51]  W. Ehlers Foundations of multiphasic and porous materials , 2002 .

[52]  Christian Miehe,et al.  A multi-field incremental variational framework for gradient-extended standard dissipative solids , 2011 .

[53]  I. Babuska Error-bounds for finite element method , 1971 .

[54]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[55]  Peter Grassl,et al.  On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture , 2014, 1411.7901.

[56]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[57]  Bernhard A. Schrefler,et al.  Multi Field Simulation of Fracture , 2014 .

[58]  R. D. Boer,et al.  The development of the concept of effective stresses , 1990 .

[59]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[60]  Francisco Armero,et al.  Strong discontinuities in partially saturated poroplastic solids , 2010 .

[61]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[62]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[63]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[64]  E. Stein,et al.  Enhanced finite element formulation for geometrically linear fluid‐saturated porous media , 1997 .

[65]  Francisco Armero,et al.  Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media , 2002 .

[66]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[67]  Julien Réthoré,et al.  A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium , 2006 .

[68]  Emmanuel M Detournay,et al.  Plane-Strain Propagation of a Fluid-Driven Fracture: Small Toughness Solution , 2005 .

[69]  P. Steinmann FORMULATION AND COMPUTATION OF GEOMETRICALLY NON-LINEAR GRADIENT DAMAGE , 1999 .

[70]  A. Khoei,et al.  Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method , 2013 .

[71]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[72]  Emmanuel M Detournay,et al.  From mixture theory to biot’s approach for porous media , 1998 .

[73]  K. Terzaghi Erdbaumechanik : auf bodenphysikalischer Grundlage , 1925 .

[74]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .