Comprehensive definitions of breakdown points for independent and dependent observations

We provide a new definition of breakdown in finite samples with an extension to asymptotic breakdown. Previous definitions center around defining a critical region for either the parameter or the objective function. If for a particular outlier constellation the critical region is entered, breakdown is said to occur. In contract to the traditional approach, we leave the definition of the critical region implicit. Our definition encompasses all previousdefinitions of breakdown in both linear and non-linear regression settings. Insome cases, it leads to a different notion of breakdown than other procedures available. An advantage is that our new definition also applied to models for dependent observations (time-series, spatial statistics) where currenty breakdown definitions typically fail. We illustrate our points using examples from linear and non-linear regression as well as time-series and spatial statistics.

[1]  Shinichi Sakata,et al.  An Alternative Definition of Finite-Sample Breakdown Point with Applications to Regression Model Estimators , 1995 .

[2]  Douglas G. Simpson,et al.  Robust Direction Estimation , 1992 .

[3]  Ricardo Fraiman,et al.  Qualitative Robustness for Stochastic Processes , 1987 .

[4]  Marc G. Genton,et al.  Highly Robust Variogram Estimation , 1998 .

[5]  Xuming He A local breakdown property of robust tests in linear regression , 1991 .

[6]  W. Andrew LO, . Finance: Survey.. Journal of the American Statistical Association, , . , 2000 .

[7]  Shinichi Sakata,et al.  HIGH BREAKDOWN POINT CONDITIONAL DISPERSION ESTIMATION WITH APPLICATION TO S&P 500 DAILY RETURNS VOLATILITY , 1998 .

[8]  Howard Wainer,et al.  Robust Regression & Outlier Detection , 1988 .

[9]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[10]  M. Genton,et al.  Highly Robust Estimation of the Autocovariance Function , 2000 .

[11]  D. G. Simpson,et al.  Breakdown robustness of tests , 1990 .

[12]  Guoying Li,et al.  Breakdown properties of location $M$-estimators , 1998 .

[13]  M. Genton Spatial Breakdown Point of Variogram Estimators , 1998 .

[14]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[15]  D. G. Simpson,et al.  Lower Bounds for Contamination Bias: Globally Minimax Versus Locally Linear Estimation , 1993 .

[16]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[17]  D. Ruppert,et al.  Breakdown in Nonlinear Regression , 1992 .

[18]  A. Lucas Asymptotic robustness of least median of squares for autoregressions with additive outliers , 1998 .

[19]  Wayne A. Fuller,et al.  Measurement Error Models , 1988 .

[20]  P. Rousseeuw,et al.  Robustness of Deepest Regression , 2000 .