One-step discrimination scheme on N-particle Greenberger–Horne–Zeilinger bases

We present an experimentally feasible one-step discrimination scheme on Bell bases with trapped ions, and then generalize it to the case of N-ion Greenberger–Horne–Zeilinger (GHZ) bases. In the scheme, all the orthogonal and complete N-ion GHZ internal states can be exactly discriminated only by one step, and thus it takes very short time. Moreover, the scheme is insensitive to thermal motion and dose not require the individual addressing of the ions. The Bell-state and GHZ-state one-step discrimination scheme can be widely used in quantum information processing based on ion-trap set-up.

[1]  刘翔,et al.  Efficient scheme for teleportation of an unknown N-atom state via a two-atom entangled state without the Bell-state measurement in cavity QED , 2006 .

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  Ming Yang,et al.  Entanglement concentration for unknown atomic entangled states via entanglement swapping , 2004, quant-ph/0411157.

[4]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[5]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[6]  Lin Xiu,et al.  Probabilistic teleportation of an arbitrary three-particle state , 2005 .

[7]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[8]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[9]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[10]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[11]  蔡建武,et al.  Quantum teleportation by entanglement swapping with trapped ions , 2006 .

[12]  A Feasible Scheme for Teleportation of Multi-atom Cat-like States in Thermal Cavities , 2006 .

[13]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[14]  Yuan Hong-Chun,et al.  Quantum logic networks for controlled teleportation of a single particle via W state , 2005 .

[15]  Shi-Biao Zheng Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion , 2003, 1202.5384.

[16]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[17]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[18]  S. Bose,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.

[19]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[20]  Liu Ye,et al.  Scheme for implementing quantum dense coding in cavity QED , 2005 .

[21]  Zeng Bei,et al.  High-Dimensional Multi-particle Cat-Like State Teleportation , 2002 .

[22]  Zhen-Zhen Wu,et al.  Remote atomic information concentration without Bell-state measurement , 2006 .

[23]  戴宏毅,et al.  Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair , 2003 .

[24]  M. Murao,et al.  Remote information concentration using a bound entangled state. , 2000, Physical review letters.

[25]  Debasis Sarkar,et al.  Entanglement teleportation through GHZ-class states , 2002 .

[26]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[28]  G. Guo,et al.  Controlled dense coding using the Greenberger-Horne-Zeilinger state , 2001 .

[29]  Shi-Biao Zheng Quantum-information processing and multiatom-entanglement engineering with a thermal cavity , 2002, 1202.5382.

[30]  Generation and concentration of multi-atom entangled states , 2006 .

[31]  Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference , 2004 .

[32]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[33]  Xia Yan,et al.  Multi-party dense coding in non-symmetric quantum channel , 2006 .

[34]  Ying Wu,et al.  Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing , 2004 .

[35]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[36]  E. Solano,et al.  Reliable teleportation in trapped ions , 1999 .

[37]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[38]  Quantum physics: Push-button teleportation , 2004, Nature.

[39]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[40]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[41]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.