Advanced Techniques and Algorithms for Reservoir Simulation, IV: Multiblock Solvers and Preconditioners

A parallel domain decomposition algorithm reduces the multiblock multiphase algebraic system to a nonlinear interface (mortar) problem. It is solved by an inexact Newton-GMRES method. Physics-based GMRES preconditioners are constructed for various choices of primary mortar variables.

[1]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[2]  Malgorzata Peszynska,et al.  Advanced Techniques and Algorithms for Reservoir Simulation, III: Multiphysics Coupling for Two Phase Flow in Degenerate Conditions , 2002 .

[3]  F. Brezzi,et al.  Mathematical models and finite elements for reservoir simulation : single phase, multiphase and multicomponent flows through porous media , 1988 .

[4]  P. Sneath,et al.  Quantitative method for lateral tracing of sedimentary units , 1976 .

[5]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[6]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[7]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[8]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[9]  Malgorzata Peszynska,et al.  Multiphysics coupling of codes , 2000 .

[10]  Mary F. Wheeler,et al.  Parallel Domain Decomposition Method for Mixed Finite Elements for Elliptic Partial Differential Equations , 1990 .

[11]  Mary F. Wheeler,et al.  Advanced Techniques and Algorithms for Reservoir Simulation, II: The Multiblock Approach in the Integrated Parallel Accurate Reservoir Simulator (IPARS) , 2002 .

[12]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[13]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[14]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[15]  M. Wheeler,et al.  Multigrid on the interface for mortar mixed finite element methods for elliptic problems , 2000 .

[16]  Ivan Yotov,et al.  Mixed finite element methods for flow in porous media , 1996 .

[17]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[18]  Mary F. Wheeler,et al.  A parallel, implicit, cell‐centered method for two‐phase flow with a preconditioned Newton–Krylov solver , 1997 .