Light‐Steered Isotropic Semiconductor Micromotors

Intelligent photoresponsive isotropic semiconductor micromotors are developed by taking advantage of the limited penetration depth of light to induce asymmetrical surface chemical reactions. Independent of the Brownian motion of themselves, the as-proposed isotropic micromotors are able to continuously move with both motion direction and speed just controlled by light, as well as precisely manipulate particles for nanoengineering.

[1]  Robert Pansu,et al.  Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[2]  Wei Li,et al.  Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles. , 2015, Small.

[3]  K. Wakabayashi,et al.  Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii , 2011, Proceedings of the National Academy of Sciences.

[4]  Joseph Wang,et al.  Nanomachines: Fundamentals and Applications , 2013 .

[5]  Wei Wang,et al.  Small power: Autonomous nano- and micromotors propelled by self-generated gradients , 2013 .

[6]  Martin Pumera,et al.  Photochromic Spatiotemporal Control of Bubble-Propelled Micromotors by a Spiropyran Molecular Switch. , 2016, ACS nano.

[7]  Wei Li,et al.  Light‐Driven and Light‐Guided Microswimmers , 2016 .

[8]  Hongrui Peng,et al.  Self-assembled cadmium sulfide microspheres from nanorods and their optical properties , 2008 .

[9]  Samuel Sanchez,et al.  Light-controlled propulsion of catalytic microengines. , 2011, Angewandte Chemie.

[10]  Qiang He,et al.  Near-infrared light-triggered "on/off" motion of polymer multilayer rockets. , 2014, ACS nano.

[11]  Samuel Sánchez,et al.  Topographical pathways guide chemical microswimmers , 2016, Nature Communications.

[12]  Frank Cichos,et al.  Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging , 2013 .

[13]  S. Balasubramanian,et al.  Template-assisted fabrication of salt-independent catalytic tubular microengines. , 2010, ACS nano.

[14]  Darrell Velegol,et al.  Boundaries can steer active Janus spheres , 2015, Nature Communications.

[15]  Georg Maret,et al.  Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles. , 2004 .

[16]  Joseph Wang,et al.  Motion control at the nanoscale. , 2010, Small.

[17]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[18]  G. Han,et al.  Template-free synthesis of TiO2 microspheres with tunable particle size via a non-aqueous sol–gel process , 2014 .

[19]  Yongfa Zhu,et al.  Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity , 2009 .

[20]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[21]  Leilei Xu,et al.  Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their "on-the-fly" photocatalytic activities. , 2016, Nanoscale.

[22]  A. Bachtold,et al.  Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light , 2015, ACS nano.

[23]  Carmen C. Mayorga-Martinez,et al.  Nano/micromotors in (bio)chemical science applications. , 2014, Chemical reviews.

[24]  Junqing Hu,et al.  Large-Scaled, Uniform, Monodispersed ZnO Colloidal Microspheres , 2008 .

[25]  Hartmut Löwen,et al.  Gravitaxis of asymmetric self-propelled colloidal particles , 2014, Nature Communications.

[26]  Huiru Ma,et al.  Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. , 2014, ACS applied materials & interfaces.

[27]  H. Arakawa,et al.  Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction , 2003 .

[28]  Stephen J. Ebbens,et al.  Gravitaxis in Spherical Janus Swimming Devices , 2013, Langmuir : the ACS journal of surfaces and colloids.

[29]  Stefano Sacanna,et al.  Photoactivated colloidal dockers for cargo transportation. , 2013, Journal of the American Chemical Society.

[30]  Martin Pumera,et al.  Fabrication of Micro/Nanoscale Motors. , 2015, Chemical reviews.

[31]  David J. Pine,et al.  Artificial rheotaxis , 2015, Science Advances.

[32]  John G. Gibbs,et al.  Self-Propelling Nanomotors in the Presence of Strong Brownian Forces , 2014, Nano letters.

[33]  J. Rumble CRC Handbook of Chemistry and Physics , 2019 .

[34]  David J. Pine,et al.  Living Crystals of Light-Activated Colloidal Surfers , 2013, Science.

[35]  Jiaguo Yu,et al.  Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles. , 2012, Chemistry, an Asian journal.

[36]  Hui Yang,et al.  An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. , 2010, Nature materials.

[37]  N. Umezawa,et al.  Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. , 2011, Journal of the American Chemical Society.

[38]  D. Meissner,et al.  Fundamental problems of water splitting at cadmium sulfide , 1986 .

[39]  A. Khataee,et al.  Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes , 2010 .

[40]  Oliver G. Schmidt,et al.  Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. , 2011, Chemical Society reviews.

[41]  Ayusman Sen,et al.  Light‐Driven Titanium‐Dioxide‐Based Reversible Microfireworks and Micromotor/Micropump Systems , 2010 .

[42]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[43]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[44]  S. Tanaka,et al.  Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range. , 2009, Journal of colloid and interface science.

[45]  Stephen D. Cramer,et al.  The Solubility of Oxygen in Brines from 0 to 300 °C , 1980 .

[46]  Leilei Xu,et al.  Magnetically Modulated Pot‐Like MnFe2O4 Micromotors: Nanoparticle Assembly Fabrication and their Capability for Direct Oil Removal , 2015 .

[47]  Ran Liu,et al.  Autonomous nanomotor based on copper-platinum segmented nanobattery. , 2011, Journal of the American Chemical Society.

[48]  Samuel Sanchez,et al.  Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. , 2012, ACS nano.

[49]  Wei Gao,et al.  Ultrasound-modulated bubble propulsion of chemically powered microengines. , 2014, Journal of the American Chemical Society.