Encoding Light Intensity by the Cone Photoreceptor Synapse

How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4-5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to approximately 2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.

[1]  H. Spekreijse,et al.  Horizontal cells feed back to cones by shifting the cone calcium-current activation range , 1996, Vision Research.

[2]  F. Werblin,et al.  Miniature excitatory postsynaptic currents in bipolar cells of the tiger salamander retina , 1994, Vision Research.

[3]  C. Stevens,et al.  "Kiss and run" exocytosis at hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Wu,et al.  Synaptic transmission in the outer retina. , 1994, Annual review of physiology.

[5]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[6]  J. Pokorny,et al.  Effect of sawtooth polarity on chromatic and luminance detection , 1994, Visual Neuroscience.

[7]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[8]  Joel Pokorny,et al.  Sawtooth contrast sensitivity: Decrements have the edge , 1989, Vision Research.

[9]  F. Werblin,et al.  Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. , 1998, Journal of Neurophysiology.

[10]  Guosong Liu,et al.  A Developmental Switch in Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA Receptor Activation , 2001, Neuron.

[11]  S. Barnes,et al.  Modulation of transmission gain by protons at the photoreceptor output synapse. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Rábl,et al.  Kinetics of Exocytosis Is Faster in Cones Than in Rods , 2005, The Journal of Neuroscience.

[13]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[14]  D. Attwell,et al.  The properties of single cones isolated from the tiger salamander retina , 1982, The Journal of physiology.

[15]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[16]  F. Werblin Control of Retinal Sensitivity II . Lateral Interactions at the Outer Plexiform Layer , 2022 .

[17]  Ege T. Kavalali,et al.  Kinetics and regulation of fast endocytosis at hippocampal synapses , 1998, Nature.

[18]  C. Guatimosim,et al.  Synaptic Vesicle Pools at the Frog Neuromuscular Junction , 2003, Neuron.

[19]  Richard H. Kramer,et al.  Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide , 1997, Nature.

[20]  R W Jones,et al.  Increment and decrement visual thresholds. , 1968, Journal of the Optical Society of America.

[21]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[22]  G. Matthews,et al.  Visualizing Synaptic Ribbons in the Living Cell , 2004, The Journal of Neuroscience.

[23]  K. Rábl,et al.  A Highly Ca2+-Sensitive Pool of Vesicles Contributes to Linearity at the Rod Photoreceptor Ribbon Synapse , 2004, Neuron.

[24]  Dale Purves,et al.  Perceiving the intensity of light. , 2004, Psychological review.

[25]  JoAnn Buchanan,et al.  Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. J. Koshel,et al.  Subtractive processes in light adaptation , 1992, Vision Research.

[27]  B. Hille,et al.  Ionic channels of the inner segment of tiger salamander cone photoreceptors , 1989, The Journal of general physiology.

[28]  William H Baldridge,et al.  Proton-Mediated Feedback Inhibition of Presynaptic Calcium Channels at the Cone Photoreceptor Synapse , 2005, The Journal of Neuroscience.

[29]  R. W. Rodieck The First Steps in Seeing , 1998 .

[30]  E. A. Schwartz,et al.  A cGMP-gated current can control exocytosis at cone synapses , 1994, Neuron.

[31]  D. Copenhagen,et al.  Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones , 2003, The Journal of physiology.

[32]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[33]  D. Zenisek,et al.  Transport, capture and exocytosis of single synaptic vesicles at active zones , 2000, Nature.

[34]  R. Normann,et al.  Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors , 1998, Progress in Retinal and Eye Research.

[35]  J F Ashmore,et al.  An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. , 1983, The Journal of physiology.

[36]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[37]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[38]  Ege T. Kavalali,et al.  Rapid Reuse of Readily Releasable Pool Vesicles at Hippocampal Synapses , 2000, Neuron.

[39]  M. Kreft,et al.  Properties of exocytotic response in vertebrate photoreceptors. , 2003, Journal of neurophysiology.

[40]  P. Sterling,et al.  Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals , 2004, Neuron.

[41]  S. DeVries,et al.  Exocytosed Protons Feedback to Suppress the Ca2+ Current in Mammalian Cone Photoreceptors , 2001, Neuron.

[42]  P. Sterling,et al.  Synaptic Ribbon Conveyor Belt or Safety Belt? , 2003, Neuron.

[43]  J. Lübke,et al.  FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Martin Wilson,et al.  Signal clipping by the rod output synapse , 1987, Nature.

[45]  Peter Sterling,et al.  How retinal ganglion cells prevent synaptic noise from reaching the spike output. , 2004, Journal of neurophysiology.

[46]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[47]  A. Berntson,et al.  The unitary event amplitude of mouse retinal on-cone bipolar cells , 2003, Visual Neuroscience.