Fusion of LiDAR and imagery for estimating forest canopy fuels

[1]  Robert J. McGaughey,et al.  Object-Oriented Classification of Forest Structure from Light Detection and Ranging Data for Stand Mapping , 2009 .

[2]  H. Andersen,et al.  Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data , 2009 .

[3]  L. Monika Moskal,et al.  Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR , 2009 .

[4]  Thomas T. Veblen,et al.  Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA. , 2009 .

[5]  H. Andersen,et al.  A Comparison of Statistical Methods for Estimating Forest Biomass from Light Detection and Ranging Data , 2008 .

[6]  Lara A. Arroyo,et al.  Fire models and methods to map fuel types: The role of remote sensing , 2008 .

[7]  S. Popescu,et al.  Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps , 2008 .

[8]  Warren B. Cohen,et al.  Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands. , 2008 .

[9]  Gregory P Asner,et al.  Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park. , 2008, Ecological applications : a publication of the Ecological Society of America.

[10]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[11]  Robert J. McGaughey,et al.  Assessing the influence of flight parameters, interferometric processing, slope and canopy density on the accuracy of X‐band IFSAR‐derived forest canopy height models , 2008 .

[12]  Barbara Koch,et al.  Quantifying the influence of slope, aspect, crown shape and stem density on the estimation of tree height at plot level using lidar and InSAR data , 2008 .

[13]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[14]  B. Law,et al.  Pyrogenic carbon emission from a large wildfire in Oregon, United States , 2007 .

[15]  Sean P. Healey,et al.  Using object‐oriented classification and high‐resolution imagery to map fuel types in a Mediterranean region , 2006 .

[16]  Robert E. Keane,et al.  Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements , 2006 .

[17]  S. Reutebuch,et al.  A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods , 2006 .

[18]  M. Rollins,et al.  The LANDFIRE prototype project: Nationally consistent and locally relevant geospatial data for wildland fire management , 2006 .

[19]  S. Running Is Global Warming Causing More, Larger Wildfires? , 2006, Science.

[20]  A. Goetz,et al.  Estimates of forest canopy fuel attributes using hyperspectral data , 2006 .

[21]  D. Donoghue,et al.  Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests , 2006 .

[22]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[23]  Paul E. Gessler,et al.  Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling , 2005 .

[24]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[25]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[26]  Nicholas C. Coops,et al.  Comparison of forest attributes extracted from fine spatial resolution multispectral and lidar data , 2004 .

[27]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[28]  S. Ustin,et al.  Generation of crown bulk density for Pinus sylvestris L. from lidar , 2004 .

[29]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[30]  Andrew Youngblood,et al.  Forest Structure and Fire Susceptibility in Volcanic Landscapes of the Eastern High Cascades, Oregon , 2004 .

[31]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[32]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[33]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[34]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[35]  S. Roberts,et al.  Influence of Fusing Lidar and Multispectral Imagery on Remotely Sensed Estimates of Stand Density and Mean Tree Height in a Managed Loblolly Pine Plantation , 2003, Forest Science.

[36]  Carl Seielstad,et al.  Using airborne laser altimetry to determine fuel models for estimating fire behavior , 2003 .

[37]  Ranga B. Myneni,et al.  Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .

[38]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[39]  Jan W. van Wagtendonk,et al.  The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuel models in Yosemite National Park, USA , 2003 .

[40]  Steven E. Franklin,et al.  Multi‐layer Forest Stand Discrimination with Spatial Co‐occurrence Texture Analysis of High Spatial Detail Airborne Imagery , 2002 .

[41]  Judith Winterkamp,et al.  Studying wildfire behavior using FIRETEC , 2002 .

[42]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[43]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[44]  Xuexia Chen,et al.  Relationships among airborne scanning LiDAR, high resolution multispectral imagery, and ground-based inventory data in a ponderosa pine forest , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[45]  Daniel Unger,et al.  Fuel loading prediction models developed from aerial photographs of the Sangre de Cristo and Jemez mountains of New Mexico, USA , 2002 .

[46]  Fabio Maselli,et al.  Analysis of Multitemporal NDVI Data for Crop Yield Forecasting in the Sahel , 2002 .

[47]  E. Næsset,et al.  Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .

[48]  John E. Core,et al.  Smoke management guide for prescribed and wildland fire: 2001 edition. , 2001 .

[49]  R. Hall,et al.  Incorporating texture into classification of forest species composition from airborne multispectral images , 2000 .

[50]  S. Franklin,et al.  Aerial Image Texture Information in the Estimation of Northern Deciduous and Mixed Wood Forest Leaf Area Index (LAI) , 1998 .

[51]  F. H. Harlow,et al.  FIRETEC: A transport description of wildfire behavior , 1997 .

[52]  G. Câmara,et al.  Spring: integrating remote sensing and gis by object-oriented data modelling , 1996, Comput. Graph..

[53]  G. Monette,et al.  Generalized Collinearity Diagnostics , 1992 .

[54]  Robert De Wulf,et al.  Extraction of forest stand parameters from panchromatic and multispectral SPOT-1 data , 1990 .

[55]  Martin W. Ritchie,et al.  Equations for predicting the 5-year height growth of six conifer species in southwest Oregon , 1990 .

[56]  Kennert Torlegård The International Society for Photogrammetry and Remote Sensing , 1987 .

[57]  Don M. Miller,et al.  Reducing Transformation Bias in Curve Fitting , 1984 .

[58]  James K. Agee,et al.  Biomass Consumption and Smoke Production by Prehistoric and Modern Forest Fires in Western Washington , 1983, Journal of Forestry.

[59]  D. Sprugel,et al.  Correcting for Bias in Log‐Transformed Allometric Equations , 1983 .

[60]  K. Halligan Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data , 2007 .

[61]  K. C. Slatton,et al.  Application of ground-based LIDAR for fine-scale forest fuel modeling , 2007 .

[62]  Tomas Brandtberg Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar , 2007 .

[63]  Hans-Erik Andersen,et al.  STATISTICAL PROPERTIES OF MEAN STAND BIOMASS ESTIMATORS IN A LIDAR- BASED DOUBLE SAMPLING FOREST SURVEY DESIGN , 2007 .

[64]  Joe H. Scott,et al.  FuelCalc: A Method for Estimating Fuel Characteristics , 2006 .

[65]  Jay R. Kost,et al.  Fuels Products of the LANDFIRE Project , 2006 .

[66]  M. Finney An Overview of FlamMap Fire Modeling Capabilities , 2006 .

[67]  Patricia L. Andrews,et al.  Fuels Management-How to Measure Success: Conference Proceedings , 2006 .

[68]  S. Running Climate change. Is global warming causing more, larger wildfires? , 2006, Science.

[69]  R. Keane,et al.  Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project , 2006 .

[70]  C. Hopkinson,et al.  ASSESSING THE THREE-DIMENSIONAL FREQUENCY DISTRIBUTION OF AIRBORNE AND GROUND-BASED LIDAR DATA FOR RED PINE AND MIXED DECIDUOUS FOREST PLOTS , 2004 .

[71]  Miguel G. Cruz,et al.  Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America , 2003 .

[72]  James P. Menakis,et al.  Development of coarse-scale spatial data for wildland fire and fuel management , 2002 .

[73]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[74]  J. Means,et al.  Predicting forest stand characteristics with airborne scanning lidar , 2000 .

[75]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[76]  Robert E. Keane,et al.  First Order Fire Effects Model: FOFEM 4.0, user's guide , 1997 .

[77]  J. Agee Fire Ecology of Pacific Northwest Forests , 1993 .

[78]  A. Atkinson Subset Selection in Regression , 1992 .

[79]  L. Leemis Applied Linear Regression Models , 1991 .

[80]  J. Neter,et al.  Applied Linear Regression Models , 1983 .

[81]  James K. Brown Weight and density of crowns of Rocky Mountain conifers , 1978 .

[82]  P. H. Kourtz,et al.  An application of LANDSAT digital technology to forest fire fuel type mapping , 1977 .

[83]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .