Do Computers Need Common Sense?

My aim in this paper is to make and defend three claims. First, it is incumbent on the knowledge representation and nonmonotonic communities to demonstrate that their ideas will eventually lead to improvements in the performance of implemented systems. Second , a reasonable working deenition of \com-monsense" reasoning is that it is the process of using polynomial techniques to convert a large instance of an NP-hard problem to a smaller instance on which search techniques can be applied eeectively. And nally, it is a consequence of these rst two claims that the most pressing problem facing the com-monsense community is the identiication of realistic problems and problem structures for which commonsense reductions are both necessary and eeective.

[1]  David Wilkins,et al.  Using Patterns and Plans in Chess , 1980, Artif. Intell..

[2]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[3]  Mark S. Fox,et al.  Constraint-Directed Search: A Case Study of Job-Shop Scheduling , 1987 .

[4]  Murray Campbell,et al.  Singular Extensions: Adding Selectivity to Brute-Force Searching , 1990, Artif. Intell..

[5]  Kai-Fu Lee,et al.  The Development of a World Class Othello Program , 1990, Artif. Intell..

[6]  Paul R. Cohen,et al.  A Survey of the Eighth National Conference on Artificial Intelligence: Pulling Together or Pulling Apart? , 1991, AI Mag..

[7]  Matthew L. Ginsberg The Computational Value of Nonmonotonic Reasoning , 1991, KR.

[8]  Norman M. Sadeh,et al.  Intelligent Backtracking Techniques for Job Shop Scheduling , 1992, KR.

[9]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[10]  Dana S. Nau,et al.  Strategic planning for imperfect-information games , 1993 .

[11]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[12]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[13]  Jonathan Schaeffer,et al.  Man versus Machine for the World Checkers Championship , 1993, J. Int. Comput. Games Assoc..

[14]  Kurt Konolige,et al.  Easy to be Hard: Difficult Problems for Greedy Algorithms , 1994, KR.

[15]  James M. Crawford,et al.  Experimental Results on the Application of Satisfiability Algorithms to Scheduling Problems , 1994, AAAI.

[16]  Matthew L. Ginsberg,et al.  GSAT and dynamic backtracking , 1994, KR 1994.

[17]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[18]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[19]  Herbert A. Simon,et al.  Artificial Intelligence: An Empirical Science , 1995, Artif. Intell..

[20]  Matthew L. Ginsberg,et al.  Approximate Planning , 1995, Artif. Intell..

[21]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[22]  Ilkka Niemell,et al.  Towards Eecient Default Reasoning , 1995 .

[23]  Avi Pfeffer,et al.  Generating and Solving Imperfect Information Games , 1995, IJCAI.

[24]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[25]  Henry A. Kautz,et al.  ming, Propositional Logic, and Stochastic Search , 1996 .

[26]  James M. Crawford,et al.  Toward Efficient Default Reasoning , 1996, AAAI/IAAI, Vol. 1.

[27]  Matthew L. Ginsberg,et al.  Partition Search , 1996, AAAI/IAAI, Vol. 1.