A high-precision aerosol retrieval algorithm for FY-3D MERSI-II images.

[1]  C. Ward‐Caviness,et al.  Secondary organic aerosol association with cardiorespiratory disease mortality in the United States , 2021, Nature Communications.

[2]  L. Remer,et al.  A Dark Target research aerosol algorithm for MODIS observations over eastern China: increasing coverage while maintaining accuracy at high aerosol loading , 2021 .

[3]  Zhanqing Li,et al.  New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals. , 2021, Environmental pollution.

[4]  Lunche Wang,et al.  A High-Precision Aerosol Retrieval Algorithm (HiPARA) for Advanced Himawari Imager (AHI) data: Development and verification , 2021 .

[5]  M. Bilal,et al.  Performance of MODIS C6.1 Dark Target and Deep Blue aerosol products in Delhi National Capital Region, India: Application for aerosol studies , 2021 .

[6]  Wei Gong,et al.  Adapting the Dark Target Algorithm to Advanced MERSI Sensor on the FengYun-3-D Satellite: Retrieval and Validation of Aerosol Optical Depth Over Land , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Xiaoling Chen,et al.  Spatiotemporal relationship between Himawari-8 hourly columnar aerosol optical depth (AOD) and ground-level PM2.5 mass concentration in mainland China. , 2020, The Science of the total environment.

[8]  Jianping Huang,et al.  Assessment of dominating aerosol properties and their long-term trend in the Pan-Third Pole region: A study with 10-year multi-sensor measurements , 2020 .

[9]  Liang-pei Zhang,et al.  Investigating multiple aerosol optical depth products from MODIS and VIIRS over Asia: Evaluation, comparison, and merging , 2020, Atmospheric Environment.

[10]  Alexei Lyapustin,et al.  Merging regional and global aerosol optical depth records from major available satellite products , 2020 .

[11]  Peng Zhang,et al.  Capability of Fengyun-3D Satellite in Earth System Observation , 2019, Journal of Meteorological Research.

[12]  Yiran Peng,et al.  Evaluation and uncertainty estimate of next-generation geostationary meteorological Himawari-8/AHI aerosol products. , 2019, The Science of the total environment.

[13]  J. Burrows,et al.  Understanding MODIS dark-target collection 5 and 6 aerosol data over China: Effect of surface type, aerosol loading and aerosol absorption , 2019, Atmospheric research.

[14]  Zhanqing Li,et al.  Satellite-derived 1-km-resolution PM1 concentrations from 2014 to 2018 across China. , 2019, Environmental science & technology.

[15]  Liangfu Chen,et al.  Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation , 2019, Atmospheric Environment.

[16]  B. Samset,et al.  Emerging Asian aerosol patterns , 2019, Nature Geoscience.

[17]  Huihui Feng,et al.  Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China , 2019, Atmospheric Chemistry and Physics.

[18]  X. Xia,et al.  Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources , 2019, Atmospheric Environment.

[19]  Yiran Peng,et al.  Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products , 2019, Atmospheric Chemistry and Physics.

[20]  Ying Zhang,et al.  The Fundamental Aerosol Models Over China Region: A Cluster Analysis of the Ground‐Based Remote Sensing Measurements of Total Columnar Atmosphere , 2019, Geophysical Research Letters.

[21]  N. Christina Hsu,et al.  Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land , 2019, Journal of Geophysical Research: Atmospheres.

[22]  Lin Sun,et al.  A Regionally Robust High-Spatial-Resolution Aerosol Retrieval Algorithm for MODIS Images Over Eastern China , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[24]  Yuan Wang,et al.  Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces , 2018, Atmospheric Environment.

[25]  Ying Li,et al.  Joint Retrieval of Aerosol Optical Depth and Surface Reflectance Over Land Using Geostationary Satellite Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[27]  Lin Chen,et al.  Prelaunch Calibration and Radiometric Performance of the Advanced MERSI II on FengYun-3D , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Xingfa Gu,et al.  Synergistic Retrieval of Multitemporal Aerosol Optical Depth Over North China Plain Using Geostationary Satellite Data of Himawari‐8 , 2018 .

[29]  Qiang Liu,et al.  Aerosol Optical Depth Retrieval From Landsat 8 OLI Images Over Urban Areas Supported by MODIS BRDF/Albedo Data , 2018, IEEE Geoscience and Remote Sensing Letters.

[30]  Yang Wang,et al.  Preliminary Investigation of a New AHI Aerosol Optical Depth (AOD) Retrieval Algorithm and Evaluation with Multiple Source AOD Measurements in China , 2018, Remote. Sens..

[31]  Hiroshi Murakami,et al.  Common Retrieval of Aerosol Properties for Imaging Satellite Sensors , 2018 .

[32]  Zhengqiang Li,et al.  GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia , 2018 .

[33]  J. Lelieveld,et al.  Aerosol Health Effects from Molecular to Global Scales. , 2017, Environmental science & technology.

[34]  S. Carn,et al.  India Is Overtaking China as the World’s Largest Emitter of Anthropogenic Sulfur Dioxide , 2017, Scientific Reports.

[35]  Hao Xiang,et al.  Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China , 2017, Remote. Sens..

[36]  Xingfa Gu,et al.  Synergy of MODIS and AATSR for better retrieval of aerosol optical depth and land surface directional reflectance , 2017 .

[37]  Michael J. Garay,et al.  Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data , 2017 .

[38]  Hong Liao,et al.  Weather conditions conducive to Beijing severe haze more frequent under climate change , 2017 .

[39]  Shobha Kondragunta,et al.  Evaluation of the multi‐angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET , 2017, Journal of geophysical research. Atmospheres : JGR.

[40]  Daniel Krewski,et al.  Comparing the Health Effects of Ambient Particulate Matter Estimated Using Ground-Based versus Remote Sensing Exposure Estimates , 2016, Environmental health perspectives.

[41]  Beat Schmid,et al.  Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies , 2016 .

[42]  Lin Sun,et al.  Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images , 2015, Remote. Sens..

[43]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[44]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[45]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[46]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[47]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[48]  Stelios Kazadzis,et al.  Inferring absorbing organic carbon content from AERONET data , 2010 .

[49]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[50]  Lorraine Remer,et al.  MISR Aerosol Product Attributes and Statistical Comparisons With MODIS , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[51]  V. Ramaswamy,et al.  Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output , 2009 .

[52]  Mark R Viant,et al.  Spectral relative standard deviation: a practical benchmark in metabolomics. , 2009, The Analyst.

[53]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[54]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[55]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[56]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[57]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[58]  Jun Wang,et al.  Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies , 2003 .

[59]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[60]  Didier Tanré,et al.  Estimate of the aerosol properties over the ocean with POLDER , 2000 .

[61]  Philip B. Russell,et al.  Aerosol optical depth retrieval using ATSR-2 and AVHRR data during TARFOX , 1999 .

[62]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[63]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[64]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[65]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[66]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[67]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[68]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .