Reactivity of the Cu2O(100) surface: Insights from first principles calculations

[1]  Wenkai Chen,et al.  Roles of oxygen vacancy in the adsorption properties of CO and NO on Cu2O(111) surface: Results of a first-principles study , 2008 .

[2]  B. Delley,et al.  Surface oxides of the oxygen–copper system: Precursors to the bulk oxide phase? , 2007 .

[3]  Mira Todorova,et al.  Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation , 2007 .

[4]  N. Turro,et al.  Complete CO oxidation over Cu2O nanoparticles supported on silica gel. , 2006, Nano letters.

[5]  A. Soon,et al.  Plane-wave pseudopotential density functional theory periodic slab calculations of CO adsorption on Cu2O(111) surface , 2005 .

[6]  Zhipan Liu,et al.  CO Oxidation and NO Reduction on Metal Surfaces: Density Functional Theory Investigations , 2004 .

[7]  G. P. Vissokov Plasma-chemical preparation of nanostructured catalysts for low-temperature steam conversion of carbon monoxide: properties of catalysts , 2004 .

[8]  Xue-qing Gong,et al.  A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. , 2004, Journal of the American Chemical Society.

[9]  De-Hao Tsai,et al.  CO Oxidation Behavior of Copper and Copper Oxides , 2003 .

[10]  N. Takeuchi,et al.  First principles calculations of the electronic properties of bulk Cu2O, clean and doped with Ag, Ni, and Zn , 2003 .

[11]  M. Scheffler,et al.  Composition and structure of the RuO2(110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2 , 2003, cond-mat/0301602.

[12]  J. Frenken,et al.  CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. , 2002, Physical review letters.

[13]  M. Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001, cond-mat/0107229.

[14]  P. Hu,et al.  CO oxidation on Pd(100) and Pd(111): a comparative study of reaction pathways and reactivity at low and medium coverages. , 2001, Journal of the American Chemical Society.

[15]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[16]  N. McClenaghan,et al.  A density functional theory study of the surface relaxation and reactivity of Cu2O(100) , 2000 .

[17]  Varga,et al.  Atomic-scale structure and catalytic reactivity of the RuO(2)(110) surface , 2000, Science.

[18]  K. Nagase,et al.  Dynamic Study of the Oxidation State of Copper in the Course of Carbon Monoxide Oxidation over Powdered CuO and Cu2O , 1999 .

[19]  Ali Alavi,et al.  CO oxidation on Pt(111): An ab initio density functional theory study , 1998 .

[20]  M. Casarin,et al.  A theoretical study of the CO and NO chemisorption on Cu2O(111) , 1997 .

[21]  R. Evarestov,et al.  Electronic structure and properties of Cu2O , 1997 .

[22]  V. Sadykov,et al.  Comment on “Carbon Monoxide Oxidation over Three Different Oxidation States of Copper: Metallic Copper, Copper (I) Oxide, and Copper (II) Oxide—A Surface Science and Kinetic Study” by G. G. Jernigan and G. A. Somorjai , 1997 .

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  J. Nørskov,et al.  CO chemisorption at metal surfaces and overlayers. , 1996, Physical review letters.

[25]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[26]  G. Somorjai,et al.  Carbon monoxide oxidation over three different oxidation states of copper: Metallic copper, copper (I) oxide, and copper (II) oxide - a surface science and kinetic study , 1994 .

[27]  E. Solomon,et al.  Electronic structures of active sites on metal oxide surfaces: definition of the copper-zinc oxide methanol synthesis catalyst by photoelectron spectroscopy , 1993 .

[28]  Di-Jia Liu,et al.  In situ XANES characterization of the Cu oxidation state in Cu-ZSM-5 during NO decomposition catalysis , 1993 .

[29]  J. Yates,et al.  Catalytic oxidation of CO on Pt(335): A study of the active site , 1993 .

[30]  D. Cox,et al.  Surface hydride formation on a metal oxide surface: the interaction of atomic hydrogen with Cu2O(100) , 1992 .

[31]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[32]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[33]  D. Cox,et al.  Propene adsorption on Cu2O single-crystal surfaces , 1992 .

[34]  D. Cox,et al.  H2O adsorption on Cu2O(100) , 1991 .

[35]  Cox,et al.  Photoemission and low-energy-electron-diffraction study of clean and oxygen-dosed Cu2O (111) and (100) surfaces. , 1991, Physical review. B, Condensed matter.

[36]  Jensen,et al.  Surface reconstruction of Cu(110) induced by oxygen chemisorption. , 1990, Physical review. B, Condensed matter.

[37]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[38]  L. Tjeng,et al.  Electronic structure of Cu2O and CuO. , 1988, Physical review. B, Condensed matter.

[39]  Pandey,et al.  Ab initio theory of polar semiconductor surfaces. I. Methodology and the (22) reconstructions of GaAs(111). , 1987, Physical review. B, Condensed matter.

[40]  R. Restori,et al.  Charge density in cuprite, Cu2O , 1986 .

[41]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[42]  A. Werner,et al.  High-pressure x-ray study of Cu 2 O and Ag 2 O , 1982 .

[43]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[44]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[45]  G. Ertl Untersuchung von oberflächenreaktionen mittels beugung langsamer elektronen (LEED): I. Wechselwirkung von O2 und N2O mit (110)-, (111)- und (100)-Kupfer-Oberflächen , 1967 .

[46]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[47]  F. Stone,et al.  The reaction between carbon monoxide and oxygen on cuprous oxide at room temperature , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  R. Schlögl,et al.  Copper (sub)oxide formation: a surface sensitive characterization of model catalysts , 2000 .

[49]  A. Alavi,et al.  Ab initio calculations on the Al2O3(0001) surface , 1999 .

[50]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[51]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .