A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms

[1]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations , 2013, J. Comput. Phys..

[2]  T. Hou,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[3]  Andrew J. Majda,et al.  Lessons in uncertainty quantification for turbulent dynamical systems , 2012 .

[4]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[5]  Houman Owhadi,et al.  Optimal Uncertainty Quantification , 2010, SIAM Rev..

[6]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[7]  Y. Maday,et al.  Reduced Basis Techniques for Stochastic Problems , 2010, 1004.0357.

[8]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[9]  A. Chorin,et al.  Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.

[10]  O. L. Maître,et al.  A Newton method for the resolution of steady stochastic Navier–Stokes equations , 2009 .

[11]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[12]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[13]  Andrew J Majda,et al.  An applied mathematics perspective on stochastic modelling for climate , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Daniele Venturi,et al.  Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.

[15]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[16]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[17]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[18]  Yvon Maday,et al.  Reduced basis method for the rapid and reliable solution of partial differential equations , 2006 .

[19]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[20]  Yalchin Efendiev,et al.  Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..

[21]  Thomas Y. Hou,et al.  Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..

[22]  Daniele Venturi,et al.  On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate , 2006, Journal of Fluid Mechanics.

[23]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[24]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[25]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[26]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[27]  G. Papanicolaou,et al.  Theory and applications of time reversal and interferometric imaging , 2003 .

[28]  Hamdi A. Tchelepi,et al.  Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms , 2003 .

[29]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[30]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[31]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[32]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[33]  E Weinan,et al.  Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.

[34]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[35]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[36]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[38]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[39]  K. Yamamoto,et al.  Turbulence in the randomly forced, one-dimensional Burgers flow , 1975 .

[40]  A. Chorin Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.

[41]  A. Chorin Hermite expansions in Monte-Carlo computation , 1971 .

[42]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[43]  N. Wiener The Homogeneous Chaos , 1938 .

[44]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[45]  Mulin Cheng,et al.  Adaptive Methods Exploring Intrinsic Sparse Structures of Stochastic Partial Differential Equations , 2013 .

[46]  Xiao-Hui Wu,et al.  EFFECTIVE PARAMETRIZATION FOR RELIABLE RESERVOIR PERFORMANCE PREDICTIONS , 2012 .

[47]  T. Sapsis,et al.  Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty , 2012 .

[48]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[49]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[50]  Wuan Luo Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations , 2006 .

[51]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[52]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[53]  F. Massaioli,et al.  Scaling And Intermittency In Burgers' Turbulence , 1995 .

[54]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[55]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[56]  D. W. Lewis Matrix theory , 1991 .

[57]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .