Precise calibration of the dependence of surface brightness–colour relations on colour and class for late-type stars (Corrigendum)

Surface brightness-colour relations (SBCRs) are used to derive the stellar angular diameters from photometric observations. They have various astrophysical applications, such as the distance determination of eclipsing binaries or the determination of exoplanet parameters. However, strong discrepancies between the SBCRs still exist in the literature, in particular for early and late-type stars. We aim to calibrate new SBCRs as a function of the spectral type and the luminosity class of the stars. Our goal is also to apply homogeneous criteria to the selection of the reference stars and in view of compiling an exhaustive and up-to-date list of interferometric late-type targets. We implemented criteria to select measurements in the JMMC Measured Diameters Catalog (JMDC). We then applied additional criteria on the photometric measurements used to build the SBCRs, together with stellar characteristics diagnostics. We built SBCRs for F5/K7-II/III, F5/K7-IV/V, M-II/III and M-V stars, with respective RMS of $\sigma_{F_{V}} = 0.0022$ mag, $\sigma_{F_{V}} = 0.0044$ mag, $\sigma_{F_{V}} = 0.0046$ mag, and $\sigma_{F_{V}} = 0.0038$ mag. This results in a precision on the angular diameter of 1.0\%, 2.0\%, 2.1\%, and 1.7\%, respectively. These relations cover a large $V-K$ colour range of magnitude, from 1 to 7.5. Our work demonstrates that SBCRs are significantly dependent on the spectral type and the luminosity class of the star. Through a new set of interferometric measurements, we demonstrate the critical importance of the selection criteria proposed for the calibration of SBCR. Finally, using the Gaia photometry for our samples, we obtained (G-K) SBCRs with a precision on the angular diameter between 1.1\% and 2.4\%.

[1]  S. Ridgway,et al.  ANGULAR DIAMETERS AND EFFECTIVE TEMPERATURES OF 25 K GIANT STARS FROM THE CHARA ARRAY , 2009, 0912.5491.

[2]  S. Ridgway,et al.  CHARA Array Measurements of the Angular Diameters of Exoplanet Host Stars , 2008, 0803.1411.

[3]  C. D. Laney,et al.  A new LMC K-band distance from precision measurements of nearby red clump stars , 2011, 1109.4800.

[4]  Olivier Chesneau,et al.  Pseudomagnitudes and Differential Surface Brightness: Application to the apparent diameter of stars , 2016, 1604.07700.

[5]  S. Lafrasse,et al.  LITpro: a model fitting software for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.

[6]  Timothy R. Bedding,et al.  HIPPARCOS CALIBRATION OF THE TIP OF THE RED GIANT BRANCH , 2009, 0908.2873.

[7]  John D. Monnier,et al.  Spatio-spectral encoding of fringes in optical long-baseline interferometry - Example of the 3T and 4T recombining mode of VEGA/CHARA , 2011 .

[8]  W. Gieren,et al.  The ARAUCARIA Project: Deep Near-Infrared Survey of Nearby Galaxies. I. The Distance to the Large Magellanic Cloud from K-Band Photometry of Red Clump Stars , 2002, astro-ph/0208162.

[9]  Karine Perraut,et al.  Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters , 2015, 1511.03197.

[10]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[11]  Stellar diameter measurements by two-aperture interferometry in the infrared , 1983 .

[12]  Adam L. Kraus,et al.  How to Constrain Your M Dwarf. II. The Mass–Luminosity–Metallicity Relation from 0.075 to 0.70 Solar Masses , 2018, The Astrophysical Journal.

[13]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[14]  David Mozurkewich,et al.  Angular diameter measurements of stars , 1991 .

[15]  A. Monreal-Ibero,et al.  Three-dimensional mapping of the local interstellar medium with composite data , 2017, 1706.07711.

[16]  L. Eyer,et al.  3D maps of the local ISM from inversion of individual color excess measurements , 2013, 1309.6100.

[17]  G. Zins,et al.  SearchCal: a Virtual Observatory tool for searching calibrators in optical long-baseline interferometry II. The faint-object case , 2006, astro-ph/0607026.

[18]  W. Gieren,et al.  Fundamental properties of red-clump stars from long-baseline H-band interferometry , 2018, Astronomy & Astrophysics.

[19]  M. J. Creech-Eakman,et al.  Supergiant temperatures and linear radii from near‐infrared interferometry , 2008, 0811.4239.

[20]  Romain G. Petrov,et al.  VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance , 2009 .

[21]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[22]  Pierre Kervella,et al.  The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions , 2016, 1611.09976.

[23]  Tyler E. Nordgren,et al.  Calibration of the Barnes-Evans Relation Using Interferometric Observations of Cepheids , 2002, astro-ph/0203130.

[24]  David Mozurkewich,et al.  Angular Diameters of Stars from the Mark III Optical Interferometer , 2003 .

[25]  Ellyn K. Baines,et al.  Angular Diameters of the G Subdwarf μ Cassiopeiae A and the K Dwarfs σ Draconis and HR 511 from Interferometric Measurements with the CHARA Array , 2008, 0804.2719.

[26]  Predicting Stellar Angular Sizes , 1999, astro-ph/9904295.

[27]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[28]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM , 2009, 0902.3095.

[29]  Hilding R. Neilson,et al.  Spherically-symmetric model stellar atmospheres and limb darkening - I. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for red giant stars , 2013 .

[30]  A. Adams,et al.  Predicting stellar angular diameters from V, I C , H and K photometry , 2017, 1709.03902.

[31]  Peter G. Tuthill,et al.  Sensitive visible interferometry with PAVO , 2008, Astronomical Telescopes + Instrumentation.

[32]  Improved Baade-Wesselink surface brightness relations , 2004, astro-ph/0406397.

[33]  D. Graczyk,et al.  Improving the surface brightness-color relation for early-type stars using optical interferometry , 2014, 1409.1351.

[34]  H. Neilson,et al.  satlas: spherical versions of the atlas stellar atmosphere program , 2008, 0809.1870.

[35]  Kaspar von Braun,et al.  DIRECTLY DETERMINED LINEAR RADII AND EFFECTIVE TEMPERATURES OF EXOPLANET HOST STARS , 2009, 0901.1206.

[36]  Kaspar von Braun,et al.  STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.

[37]  D. Mozurkewich,et al.  Angular Diameter Measurements of 24 Giant and Supergiant Stars from the Mark III Optical Interferometer , 1989 .

[38]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[39]  Otto G. Franz,et al.  SURVEYING THE BRIGHT STARS BY OPTICAL INTERFEROMETRY. I. A SEARCH FOR MULTIPLICITY AMONG STARS OF SPECTRAL TYPES F-K , 2016, 1609.05254.

[40]  Tyler E. Nordgren,et al.  Stellar Angular Diameters of Late-Type Giants and Supergiants Measured with the Navy Prototype Optical Interferometer , 1999 .

[41]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[42]  W. Gieren,et al.  Calibrating the surface brightness – color relation for late-type red giants stars in the visible domain using VEGA/CHARA interferometric observations , 2020, 2006.16609.

[43]  P. Sartoretti,et al.  The empirical Gaia G-band extinction coefficient , 2018, Astronomy & Astrophysics.

[44]  W. Gieren,et al.  Observational calibration of the projection factor of Cepheids IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids , 2017, 1708.09851.

[45]  Robert B. Leighton,et al.  Two-micron sky survey : a preliminary catalog , 1969 .

[46]  B. Pilecki,et al.  A distance to the Large Magellanic Cloud that is precise to one per cent , 2019, Nature.

[47]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[48]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry III. Calibration of the surface brightness-color relations , 2004 .

[49]  J. Laskar,et al.  NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 , 2016, 1605.09788.

[50]  Pierre Kervella,et al.  VLTI/VINCI diameter constraints on the evolutionary status of delta Eri, xi Hya, eta Boo , 2005 .

[51]  A. J. Wesselink,et al.  Surface Brightnesses in the U, B, V System with Applications of $M_{\upsilon}$ and Dimensions of Stars , 1969 .

[52]  F. Thevenin,et al.  The angular sizes of dwarf stars and subgiants Surface brightness relations calibrated by interferometry , 2004, astro-ph/0404180.

[53]  J. Armstrong,et al.  Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer , 2017, 1712.08109.

[54]  Thomas G. Barnes,et al.  Stellar Angular Diameters and Visual Surface Brightness — I LATE SPECTRAL TYPES , 1976 .