Generalizing RNA velocity to transient cell states through dynamical modeling

[1]  L. Pachter,et al.  Protein velocity and acceleration from single-cell multiomics experiments , 2020, Genome Biology.

[2]  Yury A. Malkov,et al.  Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Chenglong Xia,et al.  Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression , 2019, Proceedings of the National Academy of Sciences.

[4]  Ashwinikumar Kulkarni,et al.  Beyond bulk: a review of single cell transcriptomics methodologies and applications. , 2019, Current opinion in biotechnology.

[5]  Mohammad Lotfollahi,et al.  scGen predicts single-cell perturbation responses , 2019, Nature Methods.

[6]  Fabian J Theis,et al.  Longitudinal single cell transcriptomics reveals Krt8+ alveolar epithelial progenitors in lung regeneration , 2019, bioRxiv.

[7]  Jianhua Xing,et al.  Mapping Vector Field of Single Cells , 2019, bioRxiv.

[8]  Lior Pachter,et al.  Modular and efficient pre-processing of single-cell RNA-seq , 2019, bioRxiv.

[9]  Fabian J. Theis,et al.  Concepts and limitations for learning developmental trajectories from single cell genomics , 2019, Development.

[10]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[11]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome biology.

[12]  Martin J. Aryee,et al.  Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics , 2019, Cell.

[13]  Fabian J Theis,et al.  scSLAM-seq reveals core features of transcription dynamics in single cells , 2019, bioRxiv.

[14]  Fabian J. Theis,et al.  Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis , 2019, Development.

[15]  Alexandra Maslova,et al.  Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors , 2018, bioRxiv.

[16]  Chun Jimmie Ye,et al.  Lineage dynamics of murine pancreatic development at single-cell resolution , 2018, Nature Communications.

[17]  M. McCarthy,et al.  Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling , 2018, Development.

[18]  A. van Oudenaarden,et al.  Single-Cell Transcriptomics Meets Lineage Tracing. , 2018, Cell stem cell.

[19]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[20]  M. C. Jørgensen,et al.  Notch Controls Multiple Pancreatic Cell Fate Regulators Through Direct Hes1-mediated Repression , 2018, bioRxiv.

[21]  J. Marioni,et al.  Using single‐cell genomics to understand developmental processes and cell fate decisions , 2018, Molecular systems biology.

[22]  A. Oudenaarden,et al.  Whole-organism clone tracing using single-cell sequencing , 2018, Nature.

[23]  J. Junker,et al.  Simultaneous lineage tracing and cell-type identification using CRISPR/Cas9-induced genetic scars , 2018, Nature Biotechnology.

[24]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[25]  S. Linnarsson,et al.  Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing , 2018, Nature Neuroscience.

[26]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT , 2017, bioRxiv.

[27]  Caleb Weinreb,et al.  Fundamental limits on dynamic inference from single-cell snapshots , 2017, Proceedings of the National Academy of Sciences.

[28]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[29]  Mauro J. Muraro,et al.  A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche. , 2017, Cell reports.

[30]  E. Bonifacio,et al.  Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. , 2017, Cell Metabolism.

[31]  Dong Jin Kim,et al.  Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy , 2017, Experimental &Molecular Medicine.

[32]  Shalev Itzkovitz,et al.  Spatial transcriptomics: paving the way for tissue-level systems biology. , 2017, Current opinion in biotechnology.

[33]  Kirsten L. Frieda,et al.  Synthetic recording and in situ readout of lineage information in single cells , 2016, Nature.

[34]  Jan Philipp Junker,et al.  Massively parallel clonal analysis using CRISPR/Cas9 induced genetic scars , 2016, bioRxiv.

[35]  Fabian J. Theis,et al.  Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks , 2016, bioRxiv.

[36]  Y. Saeys,et al.  Computational methods for trajectory inference from single‐cell transcriptomics , 2016, European journal of immunology.

[37]  A. Ustione,et al.  Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells , 2016, Genes & development.

[38]  Fabian J. Theis,et al.  Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion , 2016, PLoS Comput. Biol..

[39]  Sean C. Bendall,et al.  Wishbone identifies bifurcating developmental trajectories from single-cell data , 2016, Nature Biotechnology.

[40]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[41]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[42]  N. Sonenberg,et al.  Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic β cells , 2014, Proceedings of the National Academy of Sciences.

[43]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[44]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[45]  J. Hablitz,et al.  Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus , 2013, Neuroscience.

[46]  M. Banasr,et al.  Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. , 2013, The international journal of neuropsychopharmacology.

[47]  Brian Munsky,et al.  Listening to the noise: random fluctuations reveal gene network parameters , 2009, Molecular systems biology.

[48]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[49]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[50]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[51]  C. Stanley,et al.  Congenital Hyperinsulinism–Associated ABCC8 Mutations That Cause Defective Trafficking of ATP-Sensitive K+ Channels , 2007, Diabetes.

[52]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[53]  Bruce Aronow,et al.  Global expression analysis of gene regulatory pathways during endocrine pancreatic development , 2004, Development.