Convective instability and transient growth in steady and pulsatile stenotic flows

We show that suitable initial disturbances to steady or long-period pulsatile flows in a straight tube with an axisymmetric 75%-occlusion stenosis can produce very large transient energy growths. The global optimal disturbances to an initially axisymmetric state found by linear analyses are three-dimensional wave packets that produce localized sinuous convective instability in extended shear layers. In pulsatile flow, initial conditions that trigger the largest disturbances are either initiated at, or advect to, the separating shear layer at the stenosis in phase with peak systolic flow. Movies are available with the online version of the paper.

[1]  S. Sherwin,et al.  Direct optimal growth analysis for timesteppers , 2008 .

[2]  J. Chomaz,et al.  Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubble in a global framework , 2008, Journal of Fluid Mechanics.

[3]  S. Sherwin,et al.  Convective instability and transient growth in flow over a backward-facing step , 2007, Journal of Fluid Mechanics.

[4]  P. Fischer,et al.  Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow , 2007, Journal of Fluid Mechanics.

[5]  D. Henningson,et al.  Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes , 2007, Journal of Fluid Mechanics.

[6]  Spencer J. Sherwin,et al.  Instability modes and transition of pulsatile stenotic flow: pulse-period dependence , 2007, Journal of Fluid Mechanics.

[7]  F. Gallaire,et al.  On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer , 2005, Journal of Fluid Mechanics.

[8]  Spencer J. Sherwin,et al.  Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows , 2005, Journal of Fluid Mechanics.

[9]  J. Chomaz,et al.  GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS: Non-Normality and Nonlinearity , 2005 .

[10]  Spencer J. Sherwin,et al.  Formulation of a Galerkin spectral element-fourier method for three-dimensional incompressible flows in cylindrical geometries , 2004 .

[11]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[12]  Dimitris Drikakis,et al.  Instability in three-dimensional, unsteady, stenotic flows , 2002 .

[13]  C. Cossu,et al.  Global Measures of Local Convective Instabilities , 1997 .

[14]  P. Schmid,et al.  Optimal energy density growth in Hagen–Poiseuille flow , 1994, Journal of Fluid Mechanics.

[15]  Richard S.C. Cobbold,et al.  Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods , 1989, Journal of Fluid Mechanics.

[16]  D. Giddens,et al.  Characterization and evolution poststenotic flow disturbances. , 1981, Journal of biomechanics.

[17]  Theodor Sexl,et al.  Über den von E. G. Richardson entdeckten „Annulareffekt“ , 1930 .