Investigation of the phase change mechanism of Ge6Sn2Sb2Te11

[1]  Bernd Rauschenbach,et al.  Atomic structure and dynamic reconfiguration of layered defects in van der Waals layered Ge-Sb-Te based materials , 2017 .

[2]  M. Wuttig,et al.  Investigating the Influence of Resonant Bonding on the Optical Properties of Phase Change Materials (GeTe)xSnSb2Se4 , 2017 .

[3]  Marcel A. Verheijen,et al.  Dynamic reconfiguration of van der Waals gaps within GeTe-Sb2Te3 based superlattices. , 2017, Nanoscale.

[4]  M. Wuttig,et al.  Enhanced temperature stability and exceptionally high electrical contrast of selenium substituted Ge2Sb2Te5 phase change materials , 2017 .

[5]  John Robertson,et al.  Atomic Layering, Intermixing and Switching Mechanism in Ge-Sb-Te based Chalcogenide Superlattices , 2016, Scientific Reports.

[6]  J. Málek,et al.  Amorphous-to-crystalline transition in Ge8Sb(2-x)BixTe11 phase-change materials for data recording , 2016 .

[7]  Y. Saito,et al.  Contact resistivity of amorphous and crystalline GeCu2Te3 to W electrode for phase change random access memory , 2016 .

[8]  Shengbai Zhang,et al.  Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe , 2016, Scientific Reports.

[9]  Simone Raoux,et al.  Ge-doped GaSb thin films with zero mass density change upon crystallization for applications in phase change memories , 2016 .

[10]  Martin Ehrhardt,et al.  Real-space imaging of atomic arrangement and vacancy layers ordering in laser crystallised Ge2Sb2Te5 phase change thin films , 2016 .

[11]  S. Hosokawa,et al.  XAFS Analysis of Crystal GeCu2Te3 Phase Change Material , 2016 .

[12]  N. Sun,et al.  Effect of the Sn dopant on the crystallization of amorphous Ge2Sb2Te5 films induced by an excimer laser , 2015 .

[13]  Gerald Wagner,et al.  High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates. , 2015, Journal of the American Chemical Society.

[14]  John Robertson,et al.  Modeling of switching mechanism in GeSbTe chalcogenide superlattices , 2015, Scientific Reports.

[15]  K. S. Sangunni,et al.  Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys , 2015, Scientific Reports.

[16]  Martin Salinga,et al.  Role of activation energy in resistance drift of amorphous phase change materials , 2014, Front. Phys..

[17]  A. Fitch,et al.  Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides , 2014 .

[18]  A study on the crystallization behavior of Sn-doped amorphous Ge2Sb2Te5 by ultraviolet laser radiation , 2014 .

[19]  C. Stiewe,et al.  Enhancing the Thermoelectric Properties of Germanium Antimony Tellurides by Substitution with Selenium in Compounds GenSb2(Te1-xSex)n+3 (0 ≤ x ≤ 0.5; n ≥ 7). , 2014 .

[20]  A. Lotnyk,et al.  Direct imaging of crystal structure and defects in metastable Ge2Sb2Te5 by quantitative aberration-corrected scanning transmission electron microscopy , 2014 .

[21]  Simone Raoux,et al.  Crystallization properties of materials along the pseudo-binary line between GeTe and Sb , 2014 .

[22]  Simone Raoux,et al.  Nanoscale nuclei in phase change materials: Origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe , 2014 .

[23]  K. S. Sangunni,et al.  Direct hexagonal transition of amorphous (Ge2Sb2Te5)0.9Se0.1 thin films , 2014 .

[24]  S. Raoux,et al.  Structural transformations in amorphous ↔ crystalline phase change of Ga-Sb alloys , 2013 .

[25]  S. Raoux,et al.  Phase transition in stoichiometric GaSb thin films: Anomalous density change and phase segregation , 2013 .

[26]  S. Raoux,et al.  Unusual crystallization behavior in Ga-Sb phase change alloys , 2013 .

[27]  Crystallization of amorphous Ge2Sb2Te5 films induced by an ultraviolet laser , 2013 .

[28]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[29]  Stanford R. Ovshinsky,et al.  Vacancy-mediated three-center four-electron bonds in GeTe-Sb 2 Te 3 phase-change memory alloys , 2013 .

[30]  Yuta Saito,et al.  Optical contrast and laser-induced phase transition in GeCu2Te3 thin film , 2013 .

[31]  Songlin Feng,et al.  Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application , 2012 .

[32]  G. J. Snyder,et al.  Atomic-Scale Interfacial Structure in Rock Salt and Tetradymite Chalcogenide Thermoelectric Materials , 2012 .

[33]  Matthias Wuttig,et al.  Influence of Partial Substitution of Te by Se and Ge by Sn on the Properties of the Blu-ray Phase-Change Material Ge8Sb2Te11 , 2012 .

[34]  Recrystallization of an amorphized epitaxial phase-change alloy: A phoenix arising from the ashes , 2012 .

[35]  D. Ielmini,et al.  Phase Change Materials , 2009 .

[36]  S. K. Tripathi,et al.  Electrical, optical, and thermal properties of Sn-doped phase change material Ge2Sb2Te5 , 2012, Journal of Materials Science.

[37]  T. Lee,et al.  Structural role of vacancies in the phase transition of Ge 2 Sb 2 Te 5 memory materials , 2011 .

[38]  Christian Stiewe,et al.  Real structure and thermoelectric properties of GeTe-rich germanium antimony tellurides , 2011 .

[39]  N. Yamada,et al.  Local atomic order of crystalline Ge 8 Sb 2 Te 11 across the ferroelectric to paraelectric transition: The role of vacancies and static disorder , 2011 .

[40]  J. Zhou,et al.  Vacancy or not: An insight on the intrinsic vacancies in rocksalt-structured GeSbTe alloys from ab initio calculations , 2011 .

[41]  L. Kienle,et al.  Precession Electron Diffraction – a versatile tool for the characterization of Phase Change Materials , 2011 .

[42]  Matthias Wuttig,et al.  Design Rules for Phase‐Change Materials in Data Storage Applications , 2011, Advanced materials.

[43]  P Jost,et al.  Disorder-induced localization in crystalline phase-change materials. , 2011, Nature materials.

[44]  S. Elliott,et al.  Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5memory alloy , 2011 .

[45]  O. Oeckler,et al.  From phase-change materials to thermoelectrics? , 2010 .

[46]  M. Wuttig,et al.  Atomic structure of amorphous and crystallized Ge15Sb85 , 2010 .

[47]  M. Kanatzidis,et al.  Ordering Phenomena in Complex Chalcogenides – the Showcase of A2In12Q19 (A = K, Tl, NH4; Q = Se, Te) and Pseudobinary In2Q3 , 2010 .

[48]  R. Waser,et al.  Function by defects at the atomic scale — new concepts for non-volatile memories , 2010, 2009 Proceedings of ESSCIRC.

[49]  H. Wong,et al.  Crystallization times of Ge–Te phase change materials as a function of composition , 2009 .

[50]  Simone Raoux,et al.  Crystallization dynamics of nitrogen-doped Ge2Sb2Te5 , 2009 .

[51]  J. Akola,et al.  Structure of amorphous Ge8Sb2Te11: GeTe-Sb2Te3 alloys and optical storage , 2009 .

[52]  A. Walsh,et al.  Insights into the structure of the stable and metastable ( GeTe ) m ( Sb 2 Te 3 ) n compounds , 2009 .

[53]  N. Yamada,et al.  Structural characteristics of GeTe-rich GeTe–Sb2Te3 pseudobinary metastable crystals , 2008 .

[54]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[55]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[56]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[57]  S. Song,et al.  Building blocks of amorphous Ge2Sb2Te5 , 2007 .

[58]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[59]  Influence of doping upon the phase change characteristics of Ge2Sb2Te5 , 2006 .

[60]  D. A. Baker,et al.  Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5. , 2006, Physical review letters.

[61]  Single structure widely distributed in a GeTe-Sb2Te3 pseudobinary system: a rock salt structure is retained by intrinsically containing an enormous number of vacancies within its crystal. , 2006, Inorganic chemistry.

[62]  D R G Mitchell,et al.  Scripting-customized microscopy tools for Digital Micrograph. , 2005, Ultramicroscopy.

[63]  Effect of N-implantation on the structural and electrical characteristics of Ge2Sb2Te5 phase change film , 2005 .

[64]  S. Ziegler,et al.  Effect of indium doping on Ge2Sb2Te5 thin films for phase-change optical storage , 2005 .

[65]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[66]  L. Kienle,et al.  Real structure of partially ordered crystals , 2003 .

[67]  A. Simon,et al.  Realstrukturen von Defektvarianten des Zinkblendetyps , 2003 .

[68]  A. Petford-Long,et al.  Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films , 2002 .

[69]  Guo-Fu Zhou,et al.  Materials aspects in phase change optical recording , 2001 .

[70]  Matthias Wuttig,et al.  Laser induced crystallization of amorphous Ge2Sb2Te5 films , 2001 .

[71]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[72]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[73]  L. E. Shelimova,et al.  Structural and electrical properties of layered tetradymite-like compounds in the GeTe—Bi2Te3 and GeTe—Sb2Te3 systems , 2000 .

[74]  F. Catalina,et al.  Ultrafast reversible phase change in GeSb films for erasable optical storage , 1992 .

[75]  R. W. Cheary,et al.  A fundamental parameters approach to X-ray line-profile fitting , 1992 .

[76]  L. J. V. D. Pauw A METHOD OF MEASURING SPECIFIC RESISTIVITY AND HALL EFFECT OF DISCS OF ARBITRARY SHAPE , 1991 .

[77]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[78]  Kenichi Nishiuchi,et al.  High Speed Overwritable Phase Change Optical Disk Material , 1987 .

[79]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[80]  V. Kolosov,et al.  Electron Microscope Investigation of Crystals Based on Bend-Contour Arrangement II. Bending Phenomena of the Crystal Growth in an Amorphous Film† , 1982 .

[81]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .