$z$ -Domain Orthonormal Basis Functions for Physical System Identifications

In this paper, novel z-domain orthonormal basis functions are presented for physical systems identification. The new basis functions yield guaranteed real-valued time-domain responses for physical systems containing both real and complex-conjugate poles. Also, application of the new basis functions is demonstrated by adopting them for z-domain orthogonal vector fitting algorithm. Necessary theoretical foundations and validating examples are presented.

[1]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[2]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[3]  Satoru Takenaka On the Orthogonal Functions and a New Formula of Interpolation , 1925 .

[4]  Themistocles M. Rassias Inner product spaces and applications , 1997 .

[5]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[6]  Brett Ninness,et al.  Orthonormal Basis Functions for Continuous-Time Systems and Lp Convergence , 1999, Math. Control. Signals Syst..

[7]  Tomas Oliveira,et al.  Rational Orthonormal Functions on the Unit Circle and on the Imaginary Axis, with Applications in System Identification , 1999 .

[8]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[9]  Katsuhiko Ogata,et al.  Discrete-time control systems (2nd ed.) , 1995 .

[10]  B. Wahlberg System identification using Laguerre models , 1991 .

[11]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[12]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[13]  Paul W. Broome,et al.  Discrete Orthonormal Sequences , 1965, JACM.

[14]  Matti Karjalainen,et al.  Modeling and equalization of audio systems using Kautz filters , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[15]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[17]  J.E. Schutt-Aine,et al.  Broadband macromodeling of sampled frequency data using z-domain vector-fitting method , 2007, 2007 IEEE Workshop on Signal Propagation on Interconnects.

[18]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[19]  W. Kautz Transient synthesis in the time domain , 1954 .

[20]  T. Dhaene,et al.  Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method , 2008, IEEE Microwave and Wireless Components Letters.

[21]  Mark A. Clements,et al.  Digital Signal Processing and Statistical Classification , 2002 .

[22]  T. Dhaene,et al.  Orthonormal Vector Fitting: A Robust Macromodeling Tool for Rational Approximation of Frequency Domain Responses , 2007, IEEE Transactions on Advanced Packaging.

[23]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[24]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[25]  A. Semlyen,et al.  Simulation of transmission line transients using vector fitting and modal decomposition , 1998 .