Real-Time Nonlinear Shape Interpolation

We introduce a scheme for real-time nonlinear interpolation of a set of shapes. The scheme exploits the structure of the shape interpolation problem, in particular the fact that the set of all possible interpolated shapes is a low-dimensional object in a high-dimensional shape space. The interpolated shapes are defined as the minimizers of a nonlinear objective functional on the shape space. Our approach is to construct a reduced optimization problem that approximates its unreduced counterpart and can be solved in milliseconds. To achieve this, we restrict the optimization to a low-dimensional subspace that is specifically designed for the shape interpolation problem. The construction of the subspace is based on two components: a formula for the calculation of derivatives of the interpolated shapes and a Krylov-type sequence that combines the derivatives and the Hessian of the objective functional. To make the computational cost for solving the reduced optimization problem independent of the resolution of the example shapes, we combine the dimensional reduction with schemes for the efficient approximation of the reduced nonlinear objective functional and its gradient. In our experiments, we obtain rates of 20--100 interpolated shapes per second, even for the largest examples which have 500k vertices per example shape.

[1]  Guillermo Sapiro,et al.  A Continuum Mechanical Approach to Geodesics in Shape Space , 2011, International Journal of Computer Vision.

[2]  Olga Sorkine-Hornung,et al.  Fast automatic skinning transformations , 2012, ACM Trans. Graph..

[3]  Hans-Peter Seidel,et al.  An efficient construction of reduced deformable objects , 2013, ACM Trans. Graph..

[4]  Hujun Bao,et al.  Poisson shape interpolation , 2005, SPM '05.

[5]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[6]  Michael Garland,et al.  Free-form motion processing , 2008, TOGS.

[7]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[8]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[9]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[10]  Jernej Barbic,et al.  Deformable object animation using reduced optimal control , 2009, ACM Trans. Graph..

[11]  Martin Rumpf,et al.  Time‐Discrete Geodesics in the Space of Shells , 2012, Comput. Graph. Forum.

[12]  N. Mitra,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, SIGGRAPH 2009.

[13]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[14]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[15]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[16]  Christoph von Tycowicz,et al.  Eigenmodes of Surface Energies for Shape Analysis , 2010, GMP.

[17]  Hans-Peter Seidel,et al.  Animating deformable objects using sparse spacetime constraints , 2014, ACM Trans. Graph..

[18]  Martin Rumpf,et al.  A Nonlinear Elastic Shape Averaging Approach , 2009, SIAM J. Imaging Sci..

[19]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[20]  Christoph von Tycowicz,et al.  Interactive surface modeling using modal analysis , 2011, TOGS.

[21]  Tong-Yee Lee,et al.  Multiresolution Mean Shift Clustering Algorithm for Shape Interpolation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[23]  Mirela Ben-Chen,et al.  Planar shape interpolation with bounded distortion , 2013, ACM Trans. Graph..

[24]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[25]  Jernej Barbic,et al.  Vega: Non‐Linear FEM Deformable Object Simulator , 2013, Comput. Graph. Forum.

[26]  Hans-Peter Seidel,et al.  Real‐Time Symmetry‐Preserving Deformation , 2014, Comput. Graph. Forum.

[27]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[28]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[29]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[30]  Matthias Zwicker,et al.  Mesh-based inverse kinematics , 2005, ACM Trans. Graph..

[31]  Nicole Propst,et al.  Mathematical Foundations Of Elasticity , 2016 .

[32]  Markus Gross,et al.  Deformation Transfer for Detail-Preserving Surface Editing , 2006 .

[33]  H. Karcher,et al.  How to conjugateC1-close group actions , 1973 .

[34]  Roger Ohayon,et al.  Reduced bases for nonlinear structural dynamic systems: A comparative study , 2013 .

[35]  Alla Sheffer,et al.  Pyramid coordinates for morphing and deformation , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[36]  E. Wilson,et al.  Dynamic analysis by direct superposition of Ritz vectors , 1982 .

[37]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[38]  Jernej Barbic,et al.  Interactive editing of deformable simulations , 2012, ACM Trans. Graph..

[39]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[40]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[41]  Jovan Popović,et al.  Semantic deformation transfer , 2009, SIGGRAPH 2009.

[42]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[43]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[44]  P. G. Ciarlet,et al.  An Introduction to Differential Geometry with Applications to Elasticity , 2006 .

[45]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[46]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[47]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[48]  Christoph von Tycowicz,et al.  Interactive spacetime control of deformable objects , 2012, ACM Trans. Graph..