Electron Transport at the SiC/SiO2 Interface
暂无分享,去创建一个
[1] M. Pepper. The Anderson transition in silicon inversion layers: the origin of the random field and the effect of substrate bias , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[2] O. Faynot,et al. A simple parameter extraction method for ultra-thin oxide MOSFETs , 1995 .
[3] Y. Hayashi,et al. Experimental 3C-SiC MOSFET , 1986, IEEE Electron Device Letters.
[4] H. Matsunami,et al. C‐V characteristics of SiC metal‐oxide‐semiconductor diode with a thermally grown SiO2 layer , 1981 .
[5] T. Ouisse,et al. Analytical modelling of thermally-activated transport in SiC inversion layers , 1997 .
[6] F. Stern,et al. Electronic properties of two-dimensional systems , 1982 .
[7] John W. Palmour,et al. Improved oxidation procedures for reduced SiO2/SiC defects , 1996 .
[8] M. Melloch,et al. NONEQUILIBRIUM CHARACTERISTICS OF THE GATE-CONTROLLED DIODE IN 6H-SIC , 1994 .
[9] J. Palmour,et al. Characterization of device parameters in high-temperature metal-oxide-semiconductor field-effect transistors in β-SiC thin films , 1988 .
[10] B. J. Baliga,et al. Electrical properties of thermal oxide grown using dry oxidation on p‐type 6H‐silicon carbide , 1994 .
[11] Michael R. Melloch,et al. Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface , 1995 .
[12] M. Melloch,et al. Monolithic NMOS digital integrated circuits in 6H-SiC , 1994, IEEE Electron Device Letters.
[13] H. Kurz,et al. Charge trapping in dry and wet oxides on N‐type 6H–SiC studied by Fowler–Nordheim charge injection , 1996 .
[14] T. Ouisse,et al. Low‐frequency, high‐temperature conductance and capacitance measurements on metal‐oxide‐silicon carbide capacitors , 1994 .
[15] A. Rys,et al. Modeling and Characterization of Thermally Oxidized 6H Silicon Carbide , 1995 .
[16] N. Singh,et al. Thermal oxidation and electrical properties of silicon carbide metal‐oxide‐semiconductor structures , 1993 .
[17] P. Neudeck,et al. Measurement of n‐type dry thermally oxidized 6H‐SiC metal‐oxide‐semiconductor diodes by quasistatic and high‐frequency capacitance versus voltage and capacitance transient techniques , 1994 .
[18] Nevill Mott,et al. Conduction in non-crystalline materials , 1989 .
[19] M. Jonson,et al. Dielectric screening in inversion layers , 1975 .
[20] B. G. Martin,et al. Theory of bound states associated with n-type inversion layers on silicon , 1977 .
[21] F. S. Shoucair,et al. 6H silicon carbide MOSFET modelling for high temperature analogue integrated circuits (25–500°C) , 1996 .
[22] John D. Cressler,et al. Direct current characterization of depletion-mode 6HSiC MOSFETs from 294 to 723 K , 1996 .
[23] F. Stern,et al. Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .
[24] M. Kikuchi. The Meyer–Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors , 1988 .
[25] John W. Palmour,et al. 6H–silicon carbide devices and applications , 1993 .
[26] Self-aligned 6H-SiC MOSFETs with improved current drive , 1995 .
[27] M. Yamanaka,et al. C-V Characteristics of MOS Structures Fabricated of Al-Doped p-Type 3C-SiC Epilayers Grown on Si by Chemical Vapor Deposition , 1991 .
[28] H. Kurz,et al. Characterization of annealed oxides on N-type 6H-SiC by high- and low-frequency CV-measurements , 1995 .
[29] O. Faynot,et al. Analysis of SIMOX metal-oxide-semiconductor transistors operated in the high temperature range , 1995 .
[30] H. Matsunami,et al. Thermal Oxidation of SiC and Electrical Properties of Al–SiO2–SiC MOS Structure , 1982 .
[31] Robert F. Davis,et al. High‐temperature depletion‐mode metal‐oxide‐semiconductor field‐effect transistors in beta‐SiC thin films , 1987 .
[32] Gerard Ghibaudo,et al. On the theory of carrier number fluctuations in MOS devices , 1989 .
[33] T. Ouisse. Electron localization and noise in silicon carbide inversion layers , 1996 .
[34] D. Vollhardt,et al. Diagrammatic, self-consistent treatment of the Anderson localization problem in d<=2 dimensions , 1980 .
[35] T. Ouisse,et al. Experimental evidence for the existence of a mobility edge in silicon carbide inversion layers , 1995 .
[36] D. Dimaria,et al. THE PROPERTIES OF ELECTRON AND HOLE TRAPS IN THERMAL SILICON DIOXIDE LAYERS GROWN ON SILICON , 1978 .
[37] F. Hooge. 1/f noise sources , 1994 .
[38] K. Shibahara,et al. Fabrication of inversion-type n-channel MOSFET's using cubic-SiC on Si , 1986, IEEE Electron Device Letters.
[39] T. Ouisse,et al. Electrical and physico-chemical characterizations of the SiO2/SiC interface , 1995 .
[40] Yelon,et al. Origin and consequences of the compensation (Meyer-Neldel) law. , 1992, Physical review. B, Condensed matter.
[41] Michael R. Melloch,et al. Characteristics of inversion-channel and buried-channel MOS devices in 6H-SiC , 1994 .
[42] F. Stern. Two-subband screening and transport in (001)silicon inversion layers , 1978 .
[43] P. Morfouli,et al. High temperature silicon carbide MOSFETs with very low drain leakage current , 1994 .
[44] A. Goetzberger,et al. Interface states on semiconductor/insulator surfaces , 1976 .
[45] J. D. Levine. Nodal hydrogenic wave functions of donors on semiconductor surfaces. , 1965 .
[46] C. A. Murray,et al. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .
[47] E. Janzén,et al. ELECTRON EFFECTIVE MASSES AND MOBILITIES IN HIGH-PURITY 6H-SIC CHEMICAL VAPOR DEPOSITION LAYERS , 1994 .
[48] M. Schulz,et al. Charge trapping and interface state generation in 6H-SiC MOS structures , 1995 .
[49] A. Agarwal,et al. Low frequency noise in 6H-SiC MOSFET's , 1995, IEEE Electron Device Letters.
[50] T. Ouisse,et al. Surface potential fluctuations in metal–oxide–semiconductor capacitors fabricated on different silicon carbide polytypes , 1994 .
[51] C. Fung,et al. Behavior of inversion layers in 3C silicon carbide , 1986 .
[52] T. Ouisse. Self‐consistent calculations in silicon carbide inversion layers , 1994 .
[53] Sorin Cristoloveanu,et al. Mobility modeling of SOI MOSFETs in the high temperature range , 1996 .
[54] Bo Monemar,et al. Electron effective masses in 4H SiC , 1995 .
[55] M. I. Chaudhry. Electrical properties of β‐SiC metal‐oxide‐semiconductor structures , 1991 .
[56] M. Shur,et al. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide , 1991, Proc. IEEE.
[57] J. Palmour,et al. SiC MOS interface characteristics , 1994 .
[58] Temperature dependence of substrate current in silicon CMOS devices , 1993 .
[59] G. Guillot,et al. Electrical characterization of instabilities in 6H silicon carbide metal‐oxide‐semiconductor capacitors , 1994 .
[60] Chih-Tang Sah,et al. Effects of spatially inhomogeneous oxide charge distribution on the MOS capacitance‐voltage characteristics , 1974 .
[61] B. J. Baliga,et al. Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .
[62] L. Matus,et al. High Frequency Capacitance‐Voltage Characteristics of Thermally Grown SiO2 Films on β ‐ SiC , 1990 .
[63] Michael Pepper,et al. The Anderson transition , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[64] Milton E. Wadsworth,et al. Oxidation of Silicon Carbide , 1959 .
[65] Gerard Ghibaudo,et al. New method for the extraction of MOSFET parameters , 1988 .
[66] J. Halbritter,et al. ARXPS studies of SiO_2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces , 1994 .