Electron Transport at the SiC/SiO2 Interface

The properties of electron transport in silicon carbide inversion layers are reviewed. Emphasis is put on the thermally-activated conductivity which prevails at low and room temperatures. The impact of interface disorder on the performance of SiC MOSFETs is discussed in detail. These transport properties are related to the conclusions that can be drawn from the electrical characterization of the SiC/SiO 2 interface. High temperature operation is discussed more briefly.

[1]  M. Pepper The Anderson transition in silicon inversion layers: the origin of the random field and the effect of substrate bias , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  O. Faynot,et al.  A simple parameter extraction method for ultra-thin oxide MOSFETs , 1995 .

[3]  Y. Hayashi,et al.  Experimental 3C-SiC MOSFET , 1986, IEEE Electron Device Letters.

[4]  H. Matsunami,et al.  C‐V characteristics of SiC metal‐oxide‐semiconductor diode with a thermally grown SiO2 layer , 1981 .

[5]  T. Ouisse,et al.  Analytical modelling of thermally-activated transport in SiC inversion layers , 1997 .

[6]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[7]  John W. Palmour,et al.  Improved oxidation procedures for reduced SiO2/SiC defects , 1996 .

[8]  M. Melloch,et al.  NONEQUILIBRIUM CHARACTERISTICS OF THE GATE-CONTROLLED DIODE IN 6H-SIC , 1994 .

[9]  J. Palmour,et al.  Characterization of device parameters in high-temperature metal-oxide-semiconductor field-effect transistors in β-SiC thin films , 1988 .

[10]  B. J. Baliga,et al.  Electrical properties of thermal oxide grown using dry oxidation on p‐type 6H‐silicon carbide , 1994 .

[11]  Michael R. Melloch,et al.  Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface , 1995 .

[12]  M. Melloch,et al.  Monolithic NMOS digital integrated circuits in 6H-SiC , 1994, IEEE Electron Device Letters.

[13]  H. Kurz,et al.  Charge trapping in dry and wet oxides on N‐type 6H–SiC studied by Fowler–Nordheim charge injection , 1996 .

[14]  T. Ouisse,et al.  Low‐frequency, high‐temperature conductance and capacitance measurements on metal‐oxide‐silicon carbide capacitors , 1994 .

[15]  A. Rys,et al.  Modeling and Characterization of Thermally Oxidized 6H Silicon Carbide , 1995 .

[16]  N. Singh,et al.  Thermal oxidation and electrical properties of silicon carbide metal‐oxide‐semiconductor structures , 1993 .

[17]  P. Neudeck,et al.  Measurement of n‐type dry thermally oxidized 6H‐SiC metal‐oxide‐semiconductor diodes by quasistatic and high‐frequency capacitance versus voltage and capacitance transient techniques , 1994 .

[18]  Nevill Mott,et al.  Conduction in non-crystalline materials , 1989 .

[19]  M. Jonson,et al.  Dielectric screening in inversion layers , 1975 .

[20]  B. G. Martin,et al.  Theory of bound states associated with n-type inversion layers on silicon , 1977 .

[21]  F. S. Shoucair,et al.  6H silicon carbide MOSFET modelling for high temperature analogue integrated circuits (25–500°C) , 1996 .

[22]  John D. Cressler,et al.  Direct current characterization of depletion-mode 6HSiC MOSFETs from 294 to 723 K , 1996 .

[23]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[24]  M. Kikuchi The Meyer–Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors , 1988 .

[25]  John W. Palmour,et al.  6H–silicon carbide devices and applications , 1993 .

[26]  Self-aligned 6H-SiC MOSFETs with improved current drive , 1995 .

[27]  M. Yamanaka,et al.  C-V Characteristics of MOS Structures Fabricated of Al-Doped p-Type 3C-SiC Epilayers Grown on Si by Chemical Vapor Deposition , 1991 .

[28]  H. Kurz,et al.  Characterization of annealed oxides on N-type 6H-SiC by high- and low-frequency CV-measurements , 1995 .

[29]  O. Faynot,et al.  Analysis of SIMOX metal-oxide-semiconductor transistors operated in the high temperature range , 1995 .

[30]  H. Matsunami,et al.  Thermal Oxidation of SiC and Electrical Properties of Al–SiO2–SiC MOS Structure , 1982 .

[31]  Robert F. Davis,et al.  High‐temperature depletion‐mode metal‐oxide‐semiconductor field‐effect transistors in beta‐SiC thin films , 1987 .

[32]  Gerard Ghibaudo,et al.  On the theory of carrier number fluctuations in MOS devices , 1989 .

[33]  T. Ouisse Electron localization and noise in silicon carbide inversion layers , 1996 .

[34]  D. Vollhardt,et al.  Diagrammatic, self-consistent treatment of the Anderson localization problem in d<=2 dimensions , 1980 .

[35]  T. Ouisse,et al.  Experimental evidence for the existence of a mobility edge in silicon carbide inversion layers , 1995 .

[36]  D. Dimaria,et al.  THE PROPERTIES OF ELECTRON AND HOLE TRAPS IN THERMAL SILICON DIOXIDE LAYERS GROWN ON SILICON , 1978 .

[37]  F. Hooge 1/f noise sources , 1994 .

[38]  K. Shibahara,et al.  Fabrication of inversion-type n-channel MOSFET's using cubic-SiC on Si , 1986, IEEE Electron Device Letters.

[39]  T. Ouisse,et al.  Electrical and physico-chemical characterizations of the SiO2/SiC interface , 1995 .

[40]  Yelon,et al.  Origin and consequences of the compensation (Meyer-Neldel) law. , 1992, Physical review. B, Condensed matter.

[41]  Michael R. Melloch,et al.  Characteristics of inversion-channel and buried-channel MOS devices in 6H-SiC , 1994 .

[42]  F. Stern Two-subband screening and transport in (001)silicon inversion layers , 1978 .

[43]  P. Morfouli,et al.  High temperature silicon carbide MOSFETs with very low drain leakage current , 1994 .

[44]  A. Goetzberger,et al.  Interface states on semiconductor/insulator surfaces , 1976 .

[45]  J. D. Levine Nodal hydrogenic wave functions of donors on semiconductor surfaces. , 1965 .

[46]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[47]  E. Janzén,et al.  ELECTRON EFFECTIVE MASSES AND MOBILITIES IN HIGH-PURITY 6H-SIC CHEMICAL VAPOR DEPOSITION LAYERS , 1994 .

[48]  M. Schulz,et al.  Charge trapping and interface state generation in 6H-SiC MOS structures , 1995 .

[49]  A. Agarwal,et al.  Low frequency noise in 6H-SiC MOSFET's , 1995, IEEE Electron Device Letters.

[50]  T. Ouisse,et al.  Surface potential fluctuations in metal–oxide–semiconductor capacitors fabricated on different silicon carbide polytypes , 1994 .

[51]  C. Fung,et al.  Behavior of inversion layers in 3C silicon carbide , 1986 .

[52]  T. Ouisse Self‐consistent calculations in silicon carbide inversion layers , 1994 .

[53]  Sorin Cristoloveanu,et al.  Mobility modeling of SOI MOSFETs in the high temperature range , 1996 .

[54]  Bo Monemar,et al.  Electron effective masses in 4H SiC , 1995 .

[55]  M. I. Chaudhry Electrical properties of β‐SiC metal‐oxide‐semiconductor structures , 1991 .

[56]  M. Shur,et al.  Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide , 1991, Proc. IEEE.

[57]  J. Palmour,et al.  SiC MOS interface characteristics , 1994 .

[58]  Temperature dependence of substrate current in silicon CMOS devices , 1993 .

[59]  G. Guillot,et al.  Electrical characterization of instabilities in 6H silicon carbide metal‐oxide‐semiconductor capacitors , 1994 .

[60]  Chih-Tang Sah,et al.  Effects of spatially inhomogeneous oxide charge distribution on the MOS capacitance‐voltage characteristics , 1974 .

[61]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[62]  L. Matus,et al.  High Frequency Capacitance‐Voltage Characteristics of Thermally Grown SiO2 Films on β ‐ SiC , 1990 .

[63]  Michael Pepper,et al.  The Anderson transition , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[64]  Milton E. Wadsworth,et al.  Oxidation of Silicon Carbide , 1959 .

[65]  Gerard Ghibaudo,et al.  New method for the extraction of MOSFET parameters , 1988 .

[66]  J. Halbritter,et al.  ARXPS studies of SiO_2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces , 1994 .