A 1-DOF assistive exoskeleton with virtual negative damping: effects on the kinematic response of the lower limbs

We propose a novel control method for lower- limb assist that produces a virtual modification of the mechanical impedance of the human limbs. This effect is accomplished through the use of an exoskeleton that displays active impedance. The proposed method is aimed at improving the dynamic response of the human limbs, while preserving the user's control authority. Our goal is to use active-impedance exoskeleton control to improve the user's agility of motion, for example by reducing the average time needed to complete a movement. Our control method has been implemented in a 1-DOF exoskeleton designed to assist human subjects performing knee flexions and extensions. In this paper we discuss an initial study on the effect of negative exoskeleton damping (a particular case of active-impedance control) on the subject's time to complete a target-reaching motion. Experimental results show this effect to be statistically significant. On average, subjects were able to reduce the time to complete the motion by 16%.

[1]  M.A. Peshkin,et al.  Active-Impedance Control of a Lower-Limb Assistive Exoskeleton , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[2]  Frans C. T. van der Helm,et al.  A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots , 2006, Int. J. Robotics Res..

[3]  R. Ekkelenkamp,et al.  Selective control of a subtask of walking in a robotic gait trainer(LOPES) , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[4]  Manfred Morari,et al.  Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis , 2004, IEEE Transactions on Robotics and Automation.

[5]  Henry Y. K. Lau,et al.  Implementation of position–force and position–position teleoperator controllers with cable-driven mechanisms , 2005 .

[6]  Conor James Walsh,et al.  Development of a lightweight, underactuated exoskeleton for load-carrying augmentation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Jacob Rosen,et al.  A myosignal-based powered exoskeleton system , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[9]  William Townsend,et al.  Teleoperator slave ‐ WAM design methodology , 1999 .

[10]  H. van der Kooij,et al.  Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[11]  Daniel P. Ferris,et al.  An ankle-foot orthosis powered by artificial pneumatic muscles. , 2005, Journal of applied biomechanics.

[12]  Sunil Kumar Agrawal,et al.  Gravity-Balancing Leg Orthosis and Its Performance Evaluation , 2006, IEEE Transactions on Robotics.

[13]  Lihua Huang,et al.  On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX) , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[14]  H. Kawamoto,et al.  Power assist method for HAL-3 using EMG-based feedback controller , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).