Planar polynomials for commutative semifields with specified nuclei

We consider the implications of the equivalence of commutative semifields of odd order and planar Dembowski-Ostrom polynomials. This equivalence was outlined recently by Coulter and Henderson. In particular, following a more general statement concerning semifields we identify a form of planar Dembowski-Ostrom polynomial which must define a commutative semifield with the nuclei specified. Since any strong isotopy class of commutative semifields must contain at least one example of a commutative semifield described by such a planar polynomial, to classify commutative semifields it is enough to classify planar Dembowski-Ostrom polynomials of this form and determine when they describe non-isotopic commutative semifields. We prove several results along these lines. We end by introducing a new commutative semifield of order 38 with left nucleus of order 3 and middle nucleus of order 32.

[1]  Theresa P. Vaughn Polynomials and linear transformations over finite fields. , 1974 .

[2]  K. Valentine,,et al.  Contributions to the theory of care , 1989 .

[3]  D. Frank Hsu,et al.  On the hardness of counting problems of complete mappings , 2004, Discret. Math..

[4]  William M. Kantor,et al.  Commutative semifields and symplectic spreads , 2003 .

[5]  Marie Henderson,et al.  Permutations amongst the Dembowski-Ostrom polynomials , 2001 .

[6]  D. Knuth Finite semifields and projective planes , 1965 .

[7]  O. Ore Contributions to the theory of finite fields , 1934 .

[8]  Adriano Barlotti Le possibili configurazioni del sistema delle coppie punto-retta $(A,a)$ per cui un piano grafico risulta $(A,a)$-transitivo. , 1957 .

[9]  Leonard Eugene Dickson On commutative linear algebras in which division is always uniquely possible , 1906 .

[10]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[11]  Rudolf Lide,et al.  Finite fields , 1983 .

[12]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[13]  Gary L. Mullen,et al.  Finite Fields: Theory, Applications and Algorithms , 1994 .

[14]  O. Ore On a special class of polynomials , 1933 .

[15]  Robert S. Coulter,et al.  Commutative presemifields and semifields , 2008 .

[16]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[17]  J. H. Maclagan-Wedderburn A theorem on finite algebras , 1905 .