Untangling membrane rearrangement in the nidovirales.

All known positive sense single-stranded RNA viruses induce host cell membrane rearrangement for purposes of aiding viral genome replication and transcription. Members of the Nidovirales order are no exception, inducing intricate regions of double membrane vesicles and convoluted membranes crucial for the production of viral progeny. Although these structures have been well studied for some members of this order, much remains unclear regarding the biogenesis of these rearranged membranes. Here, we discuss what is known about these structures and their formation, compare some of the driving viral proteins behind this process across the nidovirus order, and examine possible routes of mechanism by which membrane rearrangement may occur.

[1]  S. Baker,et al.  A New Cistron in the Murine Hepatitis Virus Replicase Gene , 2010, Journal of Virology.

[2]  M. Denison Seeking Membranes: Positive-Strand RNA Virus Replication Complexes , 2008, PLoS biology.

[3]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[4]  K. Faaberg Arterivirus Structural Proteins and Assembly , 2014 .

[5]  A. Helenius,et al.  Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes , 1988, The Journal of cell biology.

[6]  E. Fischer,et al.  Complex Dynamic Development of Poliovirus Membranous Replication Complexes , 2011, Journal of Virology.

[7]  J. Guan,et al.  An autophagy-independent role for LC3 in equine arteritis virus replication , 2013, Autophagy.

[8]  Ronald J. Moore,et al.  Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells , 2012, PLoS pathogens.

[9]  N. Ktistakis,et al.  Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate , 2011, Autophagy.

[10]  M. Molinari,et al.  Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. , 2008, Biochemical and biophysical research communications.

[11]  Ralf Bartenschlager,et al.  Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites , 2009, Cell Host & Microbe.

[12]  Margaret A. Johnson,et al.  Proteomics Analysis Unravels the Functional Repertoire of Coronavirus Nonstructural Protein 3 , 2008, Journal of Virology.

[13]  Zhengchun Lu,et al.  Formation of the Arterivirus Replication/Transcription Complex: a Key Role for Nonstructural Protein 3 in the Remodeling of Intracellular Membranes , 2008, Journal of Virology.

[14]  J. Mackenzie,et al.  The Endoplasmic Reticulum Provides the Membrane Platform for Biogenesis of the Flavivirus Replication Complex , 2010, Journal of Virology.

[15]  P. Rottier,et al.  Mobility and Interactions of Coronavirus Nonstructural Protein 4 , 2011, Journal of Virology.

[16]  A. Gorbalenya,et al.  A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae , 2003, Archives of Virology.

[17]  J. Krijnse-Locker,et al.  Modification of intracellular membrane structures for virus replication , 2008, Nature Reviews Microbiology.

[18]  Larissa B. Thackray,et al.  Coronavirus Replication Does Not Require the Autophagy Gene ATG5 , 2007, Autophagy.

[19]  C. D. de Haan,et al.  Are nidoviruses hijacking the autophagy machinery? , 2008, Autophagy.

[20]  T. Bestebroer,et al.  MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment , 2013, The Journal of general virology.

[21]  P. Ahlquist,et al.  Nodavirus-Induced Membrane Rearrangement in Replication Complex Assembly Requires Replicase Protein A, RNA Templates, and Polymerase Activity , 2010, Journal of Virology.

[22]  J. Krijnse Locker,et al.  ORF1a-Encoded Replicase Subunits Are Involved in the Membrane Association of the Arterivirus Replication Complex , 1998, Journal of Virology.

[23]  Fulvio Reggiori,et al.  Coronaviruses Hijack the LC3-I-Positive EDEMosomes, ER-Derived Vesicles Exporting Short-Lived ERAD Regulators, for Replication , 2010, Cell Host & Microbe.

[24]  Jun Liu,et al.  Electron tomography of viruses. , 2007, Current opinion in structural biology.

[25]  R. Bartenschlager,et al.  Three-Dimensional Architecture of Tick-Borne Encephalitis Virus Replication Sites and Trafficking of the Replicated RNA , 2013, Journal of Virology.

[26]  S. Subramaniam Bridging the imaging gap: visualizing subcellular architecture with electron tomography. , 2005, Current opinion in microbiology.

[27]  R. Baric,et al.  Coronavirus Genome Structure and Replication , 2005, Current topics in microbiology and immunology.

[28]  Paul Ahlquist,et al.  Flock House Virus RNA Replicates on Outer Mitochondrial Membranes in Drosophila Cells , 2001, Journal of Virology.

[29]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[30]  J. Fontana,et al.  Virus factories: associations of cell organelles for viral replication and morphogenesis , 2005, Biology of the cell.

[31]  N. Mizushima,et al.  Coronavirus Replication Complex Formation Utilizes Components of Cellular Autophagy* , 2004, Journal of Biological Chemistry.

[32]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[33]  P. Rottier,et al.  Dynamics of Coronavirus Replication-Transcription Complexes , 2009, Journal of Virology.

[34]  C. Netherton,et al.  Virus factories, double membrane vesicles and viroplasm generated in animal cells , 2011, Current Opinion in Virology.

[35]  K. Kirkegaard,et al.  Remodeling the Endoplasmic Reticulum by Poliovirus Infection and by Individual Viral Proteins: an Autophagy-Like Origin for Virus-Induced Vesicles , 2000, Journal of Virology.

[36]  B. Neuman,et al.  Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles , 2013, mBio.

[37]  C. Dimmock,et al.  Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. , 2000, The Journal of general virology.

[38]  Pirjo Spuul,et al.  Phosphatidylinositol 3-Kinase-, Actin-, and Microtubule-Dependent Transport of Semliki Forest Virus Replication Complexes from the Plasma Membrane to Modified Lysosomes , 2010, Journal of Virology.

[39]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[40]  M. Kikkert,et al.  Arterivirus molecular biology and pathogenesis. , 2013, The Journal of general virology.

[41]  M. Ulaşlı,et al.  Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus , 2010, Cellular microbiology.

[42]  K. Kirkegaard,et al.  Topology of Double-Membraned Vesicles and the Opportunity for Non-Lytic Release of Cytoplasm , 2005, Autophagy.

[43]  P. Britton,et al.  Involvement of Autophagy in Coronavirus Replication , 2012, Viruses.

[44]  E. Snijder,et al.  Nidovirus transcription: how to make sense...? , 2006, The Journal of general virology.

[45]  Yoko Shibata,et al.  Mechanisms shaping the membranes of cellular organelles. , 2009, Annual review of cell and developmental biology.

[46]  J. Ziebuhr The Coronavirus Replicase: Insights into a Sophisticated Enzyme Machinery , 2006, Advances in experimental medicine and biology.

[47]  J. Ziebuhr,et al.  Nidovirales: Evolving the largest RNA virus genome , 2006, Virus Research.

[48]  J. Onderwater,et al.  Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex , 2006, Journal of Virology.

[49]  P. Britton,et al.  Nidovirus Genome Organization and Expression Mechanisms , 2008 .

[50]  J. Mackenzie Wrapping Things up about Virus RNA Replication , 2005, Traffic.

[51]  J. Goeman,et al.  The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses , 2013, PLoS pathogens.

[52]  P. Rottier,et al.  Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hydrophobic Domains of nsp3 and nsp6 Are Membrane Spanning , 2008, Journal of Virology.

[53]  K. Bienz,et al.  RNA Replication of Mouse Hepatitis Virus Takes Place at Double-Membrane Vesicles , 2002, Journal of Virology.

[54]  B. Hogue,et al.  Coronavirus Structural Proteins and Virus Assembly , 2008 .

[55]  Paul Ahlquist,et al.  Three-Dimensional Analysis of a Viral RNA Replication Complex Reveals a Virus-Induced Mini-Organelle , 2007, PLoS biology.

[56]  Petra Schwille,et al.  Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Gorbalenya,et al.  The in Vitro RNA Synthesizing Activity of the Isolated Arterivirus Replication/Transcription Complex Is Dependent on a Host Factor* , 2008, Journal of Biological Chemistry.

[58]  A. Salonen,et al.  Viral RNA Replication in Association with Cellular Membranes , 2005, Current topics in microbiology and immunology.

[59]  Caroline C. Friedel,et al.  Analysis of Intraviral Protein-Protein Interactions of the SARS Coronavirus ORFeome , 2007, PloS one.

[60]  P. Lécine,et al.  The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein , 2008, Virus Research.

[61]  A. Koster,et al.  Ultrastructural Characterization of Arterivirus Replication Structures: Reshaping the Endoplasmic Reticulum To Accommodate Viral RNA Synthesis , 2011, Journal of Virology.

[62]  Abraham J Koster,et al.  SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum , 2008, PLoS biology.

[63]  Reagan G. Cox,et al.  Murine Hepatitis Virus Nonstructural Protein 4 Regulates Virus-Induced Membrane Modifications and Replication Complex Function , 2009, Journal of Virology.

[64]  D. Hazuda,et al.  Localization and Membrane Topology of Coronavirus Nonstructural Protein 4: Involvement of the Early Secretory Pathway in Replication , 2007, Journal of Virology.

[65]  P. Ahlquist Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses , 2006, Nature Reviews Microbiology.

[66]  J. A. Comer,et al.  Ultrastructural Characterization of SARS Coronavirus , 2004, Emerging infectious diseases.

[67]  Y. van der Meer,et al.  Open Reading Frame 1a-Encoded Subunits of the Arterivirus Replicase Induce Endoplasmic Reticulum-Derived Double-Membrane Vesicles Which Carry the Viral Replication Complex , 1999, Journal of Virology.

[68]  K. Pedersen,et al.  Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. , 2001, The Journal of general virology.

[69]  A. Koster,et al.  Double-Membrane Compartments Structures : a Three-Dimensional Study of Single-and The Transformation of Enterovirus Replication 2011 , 2011 .

[70]  P. Ahlquist,et al.  Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. , 2010, Annual review of microbiology.

[71]  Jianbo Chen,et al.  A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. , 2002, Molecular cell.

[72]  B. Neuman,et al.  Arenavirus budding resulting from viral-protein-associated cell membrane curvature , 2013, Journal of The Royal Society Interface.

[73]  J. David-Ferreira,et al.  A N E L E C T R O N , 2022 .