Betulinic acid is a PPARγ antagonist that improves glucose uptake, promotes osteogenesis and inhibits adipogenesis

[1]  A. Lavecchia,et al.  Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode , 2016, Scientific Reports.

[2]  P. Oliveira,et al.  Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion? , 2016, Journal of agricultural and food chemistry.

[3]  Haibo Yu,et al.  Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B , 2016, Scientific Reports.

[4]  Suna Kang,et al.  A 70% Ethanol Extract of Mistletoe Rich in Betulin, Betulinic Acid, and Oleanolic Acid Potentiated β-Cell Function and Mass and Enhanced Hepatic Insulin Sensitivity , 2016, Evidence-based complementary and alternative medicine : eCAM.

[5]  P. Griffin,et al.  PPARγ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue , 2016, Diabetes.

[6]  Lei Wang,et al.  Betulinic Acid and its Derivatives as Potential Antitumor Agents , 2015, Medicinal research reviews.

[7]  P. Griffin,et al.  Identification of Bexarotene as a PPARγ Antagonist with HDX , 2015, PPAR research.

[8]  Scott A. Busby,et al.  Design, Synthesis, and Biological Evaluation of Indole Biphenylcarboxylic Acids as PPARγ Antagonists. , 2015, ACS medicinal chemistry letters.

[9]  T. Hughes,et al.  Pharmacological Repression of PPARγ Promotes Osteogenesis , 2015, Nature Communications.

[10]  Nianlan Yang,et al.  Impact of Targeted PPARγ Disruption on Bone Remodeling , 2015, Molecular and Cellular Endocrinology.

[11]  A. Atanasov,et al.  Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells , 2014, PloS one.

[12]  G. Massolini,et al.  Resveratrol and Its Metabolites Bind to PPARs , 2014, Chembiochem : a European journal of chemical biology.

[13]  L. Marcourt,et al.  Extensive phytochemical investigation of the polar constituents of Diospyros bipindensis Gürke traditionally used by Baka pygmies. , 2013, Phytochemistry.

[14]  Hongli Sun,et al.  Osteoblast‐Targeted suppression of PPARγ increases osteogenesis through activation of mTOR signaling , 2013, Stem cells.

[15]  A. Hashim,et al.  Antioxidant and α-Amylase Inhibitory Property of Phyllanthus virgatus L.: An In Vitro and Molecular Interaction Study , 2013, BioMed research international.

[16]  I. Cesari,et al.  Antimicrobial and phytochemical properties of stem bark extracts from Piptadeniastrum africanum (Hook f.) Brenan , 2013 .

[17]  G. Massolini,et al.  Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with mass spectrometry detection. , 2013, Journal of chromatography. A.

[18]  P. Carrupt,et al.  Anti-inflammatory, antimicrobial and antioxidant activities of Diospyros bipindensis (Gürke) extracts and its main constituents. , 2013, Journal of ethnopharmacology.

[19]  A. Lavecchia,et al.  New 2-(aryloxy)-3-phenylpropanoic acids as peroxisome proliferator-activated receptor α/γ dual agonists able to upregulate mitochondrial carnitine shuttle system gene expression. , 2013, Journal of medicinal chemistry.

[20]  A. Adeneye The leaf and seed aqueous extract of Phyllanthus amarus improves insulin resistance diabetes in experimental animal studies. , 2012, Journal of ethnopharmacology.

[21]  S. Ignacimuthu,et al.  Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. , 2012, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[22]  M. Poggi,et al.  A nonradioisotope chemiluminescent assay for evaluation of 2-deoxyglucose uptake in 3T3-L1 adipocytes. Effect of various carbonyls species on insulin action. , 2012, Biochimie.

[23]  P. Grisoli,et al.  Chemical composition and antimicrobial activity of Phyllanthus muellerianus (Kuntze) Excel essential oil. , 2012, Journal of Ethnopharmacology.

[24]  G. Massolini,et al.  Frontal affinity chromatography with MS detection of the ligand binding domain of PPARγ receptor: ligand affinity screening and stereoselective ligand-macromolecule interaction. , 2012, Journal of chromatography. A.

[25]  Yuen-Kit Cheng,et al.  Stereoisomers ginsenosides-20(S)-Rg₃ and -20(R)-Rg₃ differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma. , 2012, Biochemical pharmacology.

[26]  Bianca Sperl,et al.  The Natural Product Betulinic Acid Inhibits C/EBP Family Transcription Factors , 2012, Chembiochem : a European journal of chemical biology.

[27]  Scott A. Busby,et al.  Anti-Diabetic Actions of a Non-Agonist PPARγ Ligand Blocking Cdk5-Mediated Phosphorylation , 2011, Nature.

[28]  P. Grisoli,et al.  Antimicrobial properties of stem bark extracts from Phyllanthus muellerianus (Kuntze) Excell. , 2011, Journal of ethnopharmacology.

[29]  T. Misaka,et al.  Hepatic gene expression of the insulin signaling pathway is altered by administration of persimmon peel extract: a DNA microarray study using type 2 diabetic Goto-Kakizaki rats. , 2011, Journal of agricultural and food chemistry.

[30]  A. Helen,et al.  Betulinic acid inhibits endotoxin‐stimulated phosphorylation cascade and pro‐inflammatory prostaglandin E2 production in human peripheral blood mononuclear cells , 2011, British journal of pharmacology.

[31]  A. Maiti,et al.  Effective Control of Type 2 Diabetes through Antioxidant Defense by Edible Fruits of Diospyros peregrina , 2011, Evidence-based complementary and alternative medicine : eCAM.

[32]  K. Morikawa,et al.  The nuclear receptor PPARγ individually responds to serotonin‐ and fatty acid‐metabolites , 2010, The EMBO journal.

[33]  B. Aggarwal,et al.  Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer , 2010, Toxins.

[34]  S. Kavitha,et al.  Betulinic acid isolated from Bacopa monniera (L.) Wettst suppresses lipopolysaccharide stimulated interleukin-6 production through modulation of nuclear factor-kappaB in peripheral blood mononuclear cells. , 2010, International immunopharmacology.

[35]  J. Auwerx,et al.  Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. , 2010, Journal of medicinal chemistry.

[36]  Y. Li,et al.  Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions. , 2009, Metabolism: clinical and experimental.

[37]  A. Das,et al.  Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. , 2009, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[38]  M. G. Queiroz,et al.  Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal fat accumulation in mice fed a high-fat diet. , 2009, Journal of agricultural and food chemistry.

[39]  E. Novellino,et al.  Crystal structure of the peroxisome proliferator-activated receptor gamma (PPARgamma) ligand binding domain complexed with a novel partial agonist: a new region of the hydrophobic pocket could be exploited for drug design. , 2008, Journal of medicinal chemistry.

[40]  E. Novellino,et al.  Synthesis, biological evaluation, and molecular modeling investigation of chiral 2-(4-chloro-phenoxy)-3-phenyl-propanoic acid derivatives with PPARalpha and PPARgamma agonist activity. , 2008, Bioorganic & medicinal chemistry.

[41]  J. Schwabe,et al.  Structural basis for the activation of PPARγ by oxidized fatty acids , 2008, Nature Structural &Molecular Biology.

[42]  M. Lindstrom,et al.  T2384, a Novel Antidiabetic Agent with Unique Peroxisome Proliferator-activated Receptor γ Binding Properties* , 2008, Journal of Biological Chemistry.

[43]  E. Novellino,et al.  Insights into the Mechanism of Partial Agonism , 2007, Journal of Biological Chemistry.

[44]  E. Novellino,et al.  Synthesis, Biological Evaluation, and Molecular Modeling Investigation of Chiral Phenoxyacetic Acid Analogues with PPARα and PPARγ Agonist Activity , 2007, ChemMedChem.

[45]  Fulvio Loiodice,et al.  Synthesis, biological evaluation, and molecular modeling investigation of new chiral fibrates with PPARalpha and PPARgamma agonist activity. , 2005, Journal of medicinal chemistry.

[46]  Mark S Butler,et al.  The role of natural product chemistry in drug discovery. , 2004, Journal of natural products.

[47]  D. Prockop,et al.  An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. , 2004, Analytical biochemistry.

[48]  G. Barish,et al.  PPARs and the complex journey to obesity , 2004, Nature Medicine.

[49]  S. O’Rahilly,et al.  Potentiation of glucose uptake in 3T3-L1 adipocytes by PPAR gamma agonists is maintained in cells expressing a PPAR gamma dominant-negative mutant: evidence for selectivity in the downstream responses to PPAR gamma activation. , 2001, Molecular endocrinology.

[50]  T. Willson,et al.  The PPARs: from orphan receptors to drug discovery. , 2000, Journal of medicinal chemistry.

[51]  L. Madsen,et al.  Modulation of rat liver apolipoprotein gene expression and serum lipid levels by tetradecylthioacetic acid (TTA) via PPARalpha activation. , 1999, Journal of lipid research.

[52]  B. Staels,et al.  Peroxisome proliterator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis , 1999 .

[53]  J Auwerx,et al.  Mechanism of action of fibrates on lipid and lipoprotein metabolism. , 1998, Circulation.

[54]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[55]  Jasmine Chen,et al.  The Peroxisome Proliferator‐activated Receptors: Ligands and Activators a , 1996, Annals of the New York Academy of Sciences.

[56]  J. Lehmann,et al.  The structure - Activity relationship between peroxisome proliferator-activated receptor γ agonism and the antihyperglycemic activity of thiazolidinediones , 1996 .

[57]  J. Lehmann,et al.  An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor γ (PPARγ) (*) , 1995, The Journal of Biological Chemistry.

[58]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[59]  I. Issemann,et al.  Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators , 1990, Nature.

[60]  F. Yoshimura,et al.  Variation in enzymatic transient gene expression assays. , 1989, Analytical biochemistry.

[61]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[62]  M. Kraenzlin,et al.  Risk of Fractures with Glitazones , 2009, Drug safety.

[63]  J. Schwabe,et al.  Structural Basis for the Activation of Pparg by Oxidised Fatty Acids , 2008 .

[64]  S. Grundy,et al.  Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. , 2003, Circulation.

[65]  J. Berger,et al.  The mechanisms of action of PPARs. , 2002, Annual review of medicine.

[66]  W. Wahli,et al.  Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. , 1996, Endocrinology.

[67]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.