Valve's dynamic damping characteristics — Measurement and identification

This paper proposes a novel method to test the dynamic damping characteristics of valve. The testing system employs the vertical movement pattern, and has a suspension support structure. Force sensors are installed to measure the dynamic friction of the working valve directly. Making use of LuGre friction model and both adaptive genetic algorithm and chaos particle swarm optimization algorithm, the valve's dynamic damping parameters can be identified. Experiments have been carried out on a piston rod with a rubber ring and a steel cylinder. The results demonstrate the designed dynamic damping test system and the parameter identification algorithms are effective.

[1]  Edward J. Berger,et al.  Friction modeling for dynamic system simulation , 2002 .

[2]  Rafael Kelly,et al.  A measurement procedure for viscous and coulomb friction , 2000, IEEE Trans. Instrum. Meas..

[3]  Jan Swevers,et al.  An integrated friction model structure with improved presliding behavior for accurate friction compensation , 1998, IEEE Trans. Autom. Control..

[4]  Hu Hong Research on the Parameter Identification of Friction Model for Servo Systems Based on Genetic Algorithms , 2003 .

[5]  Ronald M. Hirschorn,et al.  Control of nonlinear systems with friction , 1999, IEEE Trans. Control. Syst. Technol..

[6]  Arcangelo Messina,et al.  Identification of viscous friction coefficients for a pneumatic system model using optimization methods , 2006, Math. Comput. Simul..

[7]  K.J. Astrom,et al.  Dynamic Friction Models and Control Design , 1993, 1993 American Control Conference.

[8]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[9]  Zhen Chen,et al.  Research on synchronous data acquisition and remote monitoring techniques in the valve test system , 2010, Proceedings of the 29th Chinese Control Conference.

[10]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[11]  Shiuh-Jer Huang,et al.  Optimal LuGre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table , 2009 .

[12]  Pascal Bigras,et al.  Parameter estimation for the LuGre friction model using interval analysis and set inversion , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[13]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[14]  Maarten Steinbuch,et al.  Frequency domain identification of dynamic friction model parameters , 2002, IEEE Trans. Control. Syst. Technol..