Cryogenic operation of silicon photonic modulators based on the DC Kerr effect

Reliable operation of photonic integrated circuits at cryogenic temperatures would enable new capabilities for emerging computing platforms, such as quantum technologies and low-power cryogenic computing. The silicon-on-insulator platform is a highly promising approach to developing large-scale photonic integrated circuits due to its exceptional manufacturability, CMOS compatibility, and high component density. Fast, efficient, and low-loss modulation at cryogenic temperatures in silicon, however, remains an outstanding challenge, particularly without the addition of exotic nonlinear optical materials. In this paper, we demonstrate DC-Kerr-effect-based modulation at a temperature of 5 K at GHz speeds, in a silicon photonic device fabricated exclusively within a CMOS-compatible process. This work opens up a path for the integration of DC Kerr modulators in large-scale photonic integrated circuits for emerging cryogenic classical and quantum computing applications.

[1]  T. Kippenberg,et al.  A cryogenic electro-optic interconnect for superconducting devices , 2020, Nature Electronics.

[2]  Val Zwiller,et al.  Hybrid integrated quantum photonic circuits , 2020, Nature Photonics.

[3]  K. Srinivasan,et al.  Efficient photoinduced second-harmonic generation in silicon nitride photonics , 2020, Nature Photonics.

[4]  J. Carolan,et al.  Hybrid integration methods for on-chip quantum photonics , 2019, Optica.

[5]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[6]  Michael R. Watts,et al.  A Single-Chip Optical Phased Array in a Wafer-Scale Silicon Photonics/CMOS 3D-Integration Platform , 2019, IEEE Journal of Solid-State Circuits.

[7]  Lorenzo Pavesi,et al.  Field-Induced Nonlinearities in Silicon Waveguides Embedded in Lateral p-n Junctions , 2019, Front. Phys..

[8]  J. Buckwalter,et al.  A High Spur-Free Dynamic Range Silicon DC Kerr Ring Modulator for RF Applications , 2019, Journal of Lightwave Technology.

[9]  Jorge Barreto,et al.  An integrated cryogenic optical modulator , 2019, 1904.10902.

[10]  Christian G. Bottenfield,et al.  Silicon Photonic Modulator Linearity and Optimization for Microwave Photonic Links , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Claudio Castellan,et al.  On the origin of second harmonic generation in silicon waveguides with silicon nitride cladding , 2019, Scientific Reports.

[12]  Koji Yamada,et al.  A waveguide-integrated superconducting nanowire single-photon detector with a spot-size converter on a Si photonics platform , 2019, Superconductor Science and Technology.

[13]  Dirk Englund,et al.  Scalable feedback control of single photon sources for photonic quantum technologies , 2018, Optica.

[14]  Dirk Englund,et al.  Quantum optical neural networks , 2018, npj Quantum Information.

[15]  David A. B. Miller,et al.  Matrix optimization on universal unitary photonic devices , 2018, Physical Review Applied.

[16]  L. Liu,et al.  High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond , 2018, Nature Photonics.

[17]  J. Barreto,et al.  First cryogenic electro-optic switch on silicon with high bandwidth and low power tunability , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[18]  K. Neyts,et al.  Nanophotonic Pockels modulators on a silicon nitride platform , 2018, Nature Communications.

[19]  Sae Woo Nam,et al.  Circuit designs for superconducting optoelectronic loop neurons , 2018, Journal of Applied Physics.

[20]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[21]  Damien Bonneau,et al.  On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. , 2017, Optics express.

[22]  A. Dibos,et al.  Atomic Source of Single Photons in the Telecom Band. , 2017, Physical review letters.

[23]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[24]  Dirk Englund,et al.  Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. , 2017, Nano letters.

[25]  D. Trotter,et al.  Metropolitan quantum key distribution with silicon photonics , 2017, 1708.00434.

[26]  P. Sanchis,et al.  Recent advances in strained silicon devices for enabling electro-optical functionalities , 2017, 2017 19th International Conference on Transparent Optical Networks (ICTON).

[27]  Mercedes Gimeno-Segovia,et al.  Relative multiplexing for minimising switching in linear-optical quantum computing , 2017, 1701.03306.

[28]  E. Timurdogan,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2016, Nature Photonics.

[29]  C. M. Natarajan,et al.  Chip-based quantum key distribution , 2015, Nature Communications.

[30]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[31]  John D. Siirola,et al.  Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[32]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[33]  Wei Hu,et al.  Rapamycin Inhibits Cardiac Hypertrophy by Promoting Autophagy via the MEK/ERK/Beclin-1 Pathway , 2016, Front. Physiol..

[34]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Frederic Boeuf,et al.  Comparison among Silicon modulators based on Free-Carrier Plasma Dispersion Effect , 2015, 2015 17th International Conference on Transparent Optical Networks (ICTON).

[36]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[37]  Gregory A. Howland,et al.  On-Chip Quantum Interference from a Single Silicon Ring-Resonator Source , 2015, 1504.04335.

[38]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[39]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[40]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[41]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[42]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[43]  D. S. Holmes,et al.  Energy-Efficient Superconducting Computing—Power Budgets and Requirements , 2013, IEEE Transactions on Applied Superconductivity.

[44]  R. Nawrodt,et al.  Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures , 2012 .

[45]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[46]  W. Marsden I and J , 2012 .

[47]  Michael Nagel,et al.  Pockels effect based fully integrated, strained silicon electro-optic modulator. , 2011, Optics express.

[48]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[49]  Michael Hochberg,et al.  Towards fabless silicon photonics , 2010 .

[50]  Anthony Laing,et al.  High-fidelity operation of quantum photonic circuits , 2010, 1004.0326.

[51]  Kurunathan Ratnavelu,et al.  FRONTIERS IN PHYSICS , 2009 .

[52]  Eli Atad-Ettedgui,et al.  Optomechanical Technologies for Astronomy , 2006 .

[53]  Douglas B. Leviton,et al.  Temperature-dependent refractive index of silicon and germanium , 2006, SPIE Astronomical Telescopes + Instrumentation.

[54]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[55]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[56]  R. Anderson,et al.  Carrier freezeout in silicon , 1990 .

[57]  B. J. Smith Ion implantation , 1977, Nature.