Quantum Mean Embedding of Probability Distributions

The kernel mean embedding of probability distributions is commonly used in machine learning as an injective mapping from distributions to functions in an infinite dimensional Hilbert space. It allows us, for example, to define a distance measure between probability distributions, called maximum mean discrepancy (MMD). In this work, we propose to represent probability distributions in a pure quantum state of a system that is described by an infinite dimensional Hilbert space. This enables us to work with an explicit representation of the mean embedding, whereas classically one can only work implicitly with an infinite dimensional Hilbert space through the use of the kernel trick. We show how this explicit representation can speed up methods that rely on inner products of mean embeddings and discuss the theoretical and experimental challenges that need to be solved in order to achieve these speedups.

[1]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[2]  S. Aaronson Read the fine print , 2015, Nature Physics.

[3]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[4]  Luc De Raedt,et al.  Proceedings of the 22nd international conference on Machine learning , 2005 .

[5]  Ingo Steinwart,et al.  On the Influence of the Kernel on the Consistency of Support Vector Machines , 2002, J. Mach. Learn. Res..

[6]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[7]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[9]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[10]  Timothy C. Ralph,et al.  Detecting the degree of macroscopic quantumness using an overlap measurement , 2014, 1404.7256.

[11]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[12]  Algorithmic Learning Theory , 1994, Lecture Notes in Computer Science.

[13]  Andrzej Grudka,et al.  Creating a Superposition of Unknown Quantum States. , 2015, Physical review letters.

[14]  Hans-Peter Kriegel,et al.  Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.

[15]  H. Schneider TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY , 2005 .

[16]  Radim Filip Overlap and entanglement-witness measurements , 2002 .

[17]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[18]  Thomas G. Dietterich,et al.  In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  Dinh Phung,et al.  Journal of Machine Learning Research: Preface , 2014 .

[21]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[22]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[23]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[24]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[25]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[26]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[27]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[28]  Ting Yu,et al.  Generalized coherent states, reproducing kernels, and quantum support vector machines , 2016, Quantum Inf. Comput..

[29]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[30]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[31]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[32]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[33]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[34]  Shay B. Cohen,et al.  Advances in Neural Information Processing Systems 25 , 2012, NIPS 2012.

[35]  M. Plenio,et al.  Resource Theory of Superposition. , 2017, Physical review letters.

[36]  K L Pregnell Measuring nonlinear functionals of quantum harmonic oscillator states. , 2006, Physical review letters.

[37]  Talel Abdessalem,et al.  Scikit-Multiflow: A Multi-output Streaming Framework , 2018, J. Mach. Learn. Res..

[38]  Bernhard Schölkopf,et al.  Kernel Mean Embedding of Distributions: A Review and Beyonds , 2016, Found. Trends Mach. Learn..

[39]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[40]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[41]  L. Lamata,et al.  The Forbidden Quantum Adder , 2014, Scientific Reports.

[42]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[43]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[44]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[45]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[46]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..