The Chemical Evolution of Carbon, Nitrogen, and Oxygen in Metal-poor Dwarf Galaxies

Ultraviolet nebular emission lines are important for understanding the time evolution and nucleosynthetic origins of their associated elements, but the underlying trends of their relative abundances are unclear. We present UV spectroscopy of 20 nearby low-metallicity, high-ionization dwarf galaxies obtained using the Hubble Space Telescope. Building upon previous studies, we analyze the C/O relationship for a combined sample of 40 galaxies with significant detections of the UV O+2/C+2 collisionally excited lines and direct-method oxygen abundance measurements. Using new analytic carbon ionization correction factor relationships, we confirm the flat trend in C/O versus O/H observed for local metal-poor galaxies. We find an average log(C/O) = −0.71 with an intrinsic dispersion of σ = 0.17 dex. The C/N ratio also appears to be constant at log(C/N) = 0.75, plus significant scatter (σ = 0.20 dex), with the result that carbon and nitrogen show similar evolutionary trends. This large and real scatter in C/O over a large range in O/H implies that measuring the UV C and O emission lines alone does not provide a reliable indicator of the O/H abundance. By modeling the chemical evolution of C, N, and O of individual targets, we find that the C/O ratio is very sensitive to both the detailed star formation history and to supernova feedback. Longer burst durations and lower star formation efficiencies correspond to low C/O ratios, while the escape of oxygen atoms in supernovae winds produces decreased effective oxygen yields and larger C/O ratios. Further, a declining C/O relationship is seen with increasing baryonic mass due to increasing effective oxygen yields.

[1]  C. Chiappini,et al.  2 A Panorama of Oxygen in the Universe , 2012, Oxygen in the Universe.

[2]  C. Leitherer,et al.  Metal-enriched galactic outflows shape the mass–metallicity relationship , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  C. Kehrig,et al.  The extended HeIIλ4686 emission in the extremely metal-poor galaxy SBS 0335-052E seen with MUSE★ , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  Czech Republic,et al.  Low-redshift Lyman continuum leaking galaxies with high [O iii]/[O ii] ratios , 2018, 1805.09865.

[5]  H. Dahle,et al.  Accurately predicting the escape fraction of ionizing photons using rest-frame ultraviolet absorption lines , 2018, 1803.03655.

[6]  M. Auger,et al.  A Window on the Earliest Star Formation: Extreme Photoionization Conditions of a High-ionization, Low-metallicity Lensed Galaxy at z ∼ 2* , 2018, The Astrophysical Journal.

[7]  H. Dahle,et al.  The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). II. Stacked Spectra , 2017, 1710.07499.

[8]  Lisa Kewley,et al.  Carbon Abundances in Starburst Galaxies of the Local Universe , 2017, 1709.07587.

[9]  S. Charlot,et al.  Ultraviolet spectra of extreme nearby star-forming regions – approaching a local reference sample for JWST , 2017, 1706.00881.

[10]  B. Garilli,et al.  Correction: Corrigendum: Analogues of primeval galaxies two billion years after the Big Bang , 2017, Nature Astronomy.

[11]  C. I. O. Technology.,et al.  Discovery of the most metal-poor damped Lyman-α system , 2017, 1701.03103.

[12]  L. Kewley,et al.  Abundance scaling in stars, nebulae and galaxies , 2016, 1612.03546.

[13]  J. Kollmeier,et al.  Evidence for a Hard Ionizing Spectrum from a z = 6.11 Stellar Population , 2016, 1611.07125.

[14]  D. Stark Galaxies in the First Billion Years After the Big Bang , 2016 .

[15]  A. Strom,et al.  RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.

[16]  Dawn K. Erb,et al.  CARBON AND OXYGEN ABUNDANCES IN LOW METALLICITY DWARF GALAXIES , 2016, 1605.06152.

[17]  J. Moustakas,et al.  CHAOS. III. GAS-PHASE ABUNDANCES IN NGC 5457 , 2016, 1605.01612.

[18]  A. Karakas,et al.  STELLAR YIELDS FROM METAL-RICH ASYMPTOTIC GIANT BRANCH MODELS , 2016, 1604.02178.

[19]  G. Zamorani,et al.  HIGH-RESOLUTION SPECTROSCOPY OF A YOUNG, LOW-METALLICITY OPTICALLY THIN L = 0.02L* STAR-FORMING GALAXY AT z = 3.12 , 2016, 1603.01616.

[20]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[21]  E. Stanway,et al.  Stellar population effects on the inferred photon density at reionization , 2015, 1511.03268.

[22]  J. Brinchmann,et al.  THE EXTENDED He II λ4686-EMITTING REGION IN IZw 18 UNVEILED: CLUES FOR PECULIAR IONIZING SOURCES , 2015, 1502.00522.

[23]  J. Moustakas,et al.  CHAOS I. DIRECT CHEMICAL ABUNDANCES FOR H II ?> REGIONS IN NGC 628 , 2015, 1501.02270.

[24]  J. Moustakas,et al.  CHAOS. II. GAS-PHASE ABUNDANCES IN NGC 5194 , 2015, 1501.02272.

[25]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[26]  B. Robertson,et al.  Spectroscopic detections of C iii] λ1909 Å at z ≃ 6–7: a new probe of early star-forming galaxies and cosmic reionization , 2014, 1408.3649.

[27]  Christophe Morisset,et al.  PyNeb: a new tool for analyzing emission lines - I. Code description and validation of results , 2014, 1410.6662.

[28]  B. Milvang-Jensen,et al.  Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.

[29]  W. Schuster,et al.  Carbon and oxygen abundances in stellar populations , 2014, 1406.5218.

[30]  F. Bresolin,et al.  Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution , 2014, 1406.3986.

[31]  B. Shiao,et al.  The ultraviolet sky: An overview from the GALEX surveys , 2013, 1312.3281.

[32]  L. Christensen,et al.  Testing Metallicity Indicators at Z ~ 1.4 with the Gravitationally Lensed Galaxy CASSOWARY 20* , 2013, 1311.5092.

[33]  M. Oguri,et al.  THE PHYSICAL CONDITIONS, METALLICITY AND METAL ABUNDANCE RATIOS IN A HIGHLY MAGNIFIED GALAXY AT z = 3.6252 , 2013, 1310.6695.

[34]  Paul S. Smith,et al.  Candidate type II quasars at 2 < z < 4.3 in the Sloan Digital Sky Survey III , 2013, 1307.7289.

[35]  M. Donahue,et al.  EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.

[36]  M. Oey,et al.  THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE “GREEN PEA” GALAXIES , 2013, 1301.0530.

[37]  K. Shimasaku,et al.  FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Lyα EMITTERS, , 2012, 1208.3260.

[38]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[39]  J. Hjorth,et al.  Gravitationally lensed galaxies at 2 < z < 3.5: direct abundance measurements of Ly α emitters , 2012, 1209.0775.

[40]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[41]  Benjamin D. Johnson,et al.  DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES , 2012, 1205.6782.

[42]  C. Ramsbottom,et al.  COLLISION STRENGTHS AND EFFECTIVE COLLISION STRENGTHS FOR TRANSITIONS WITHIN THE GROUND-STATE CONFIGURATION OF S iii , 2012 .

[43]  S. Tayal ELECTRON EXCITATION COLLISION STRENGTHS FOR SINGLY IONIZED NITROGEN , 2011 .

[44]  C. Kobayashi,et al.  The evolution of isotope ratios in the Milky Way Galaxy , 2011, 1102.5312.

[45]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[46]  M. Peeples,et al.  Constraints on star formation driven galaxy winds from the mass–metallicity relation at z= 0 , 2010, 1007.3743.

[47]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[48]  Manuel Peimbert,et al.  ON THE O/H, Mg/H, Si/H, AND Fe/H GAS AND DUST ABUNDANCE RATIOS IN GALACTIC AND EXTRAGALACTIC H ii REGIONS , 2010, 1006.0692.

[49]  O. Zatsarinny,et al.  BREIT–PAULI TRANSITION PROBABILITIES AND ELECTRON EXCITATION COLLISION STRENGTHS FOR SINGLY IONIZED SULFUR , 2010 .

[50]  R. Bohlin HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS , 2010, 1002.4381.

[51]  G. Ferland,et al.  Electron-impact excitation of O II fine-structure levels. , 2009, 0907.4209.

[52]  Wolfgang L. Wiese,et al.  Critically Evaluated Atomic Transition Probabilities for Sulfur S I – S XV , 2009 .

[53]  J. M. Burgos,et al.  Electron-impact excitation of Ar$^{2+}$ , 2009 .

[54]  F. Bresolin,et al.  KECK HIRES SPECTROSCOPY OF EXTRAGALACTIC H ii REGIONS: C AND O ABUNDANCES FROM RECOMBINATION LINES , 2009, 0905.2532.

[55]  D. Fabbian,et al.  The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars , 2008, 0810.0281.

[56]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[57]  C. Esteban,et al.  The abundance discrepancy problem in HII regions , 2006, astro-ph/0610903.

[58]  Á. López-Sánchez,et al.  The Localized Chemical Pollution in NGC 5253 Revisited: Results from Deep Echelle Spectrophotometry , 2006, astro-ph/0609498.

[59]  J. Dalcanton The Metallicity of Galaxy Disks: Infall versus Outflow , 2006, astro-ph/0608590.

[60]  R. Hirschi Very low-metallicity massive stars: - Pre-SN evolution models and primary nitrogen production , 2006, astro-ph/0608170.

[61]  D. Casebeer,et al.  On the Determination of N and O Abundances in Low-Metallicity Systems , 2006, astro-ph/0603654.

[62]  M. Haynes,et al.  Accepted for publication in the Astrophysical Journal Oxygen and Nitrogen in Isolated Dwarf Irregular Galaxies , 2005 .

[63]  T. Thuan,et al.  Oxygen Abundance Determination in H II Regions: The Strong Line Intensities-Abundance Calibration Revisited , 2005 .

[64]  M. Ruiz,et al.  Chemical Composition of Two H II Regions in NGC 6822 Based on VLT Spectroscopy , 2005, astro-ph/0507084.

[65]  S. Veilleux,et al.  Galactic Winds , 2005, astro-ph/0504435.

[66]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[67]  C. Fischer,et al.  Breit–Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences☆ , 2004 .

[68]  G. Jacoby,et al.  Neon and Oxygen Abundances in M33 , 2004, astro-ph/0510295.

[69]  E. Grebel,et al.  Strong Emission Line H II Galaxies in the Sloan Digital Sky Survey. I. Catalog of DR1 Objects with Oxygen Abundances from Te Measurements , 2004, astro-ph/0404133.

[70]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[71]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[72]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[73]  C. Chiappini,et al.  Stellar yields with rotation and their effect on chemical evolution models , 2003, astro-ph/0308067.

[74]  M. Lombardi,et al.  Massive Star Formation in a Gravitationally Lensed H II Galaxy at z = 3.357 , 2003, astro-ph/0307162.

[75]  C. Chiappini,et al.  Oxygen, carbon and nitrogen evolution in galaxies , 2002, astro-ph/0209627.

[76]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[77]  D. Garnett The Luminosity-Metallicity Relation, Effective Yields, and Metal Loss in Spiral and Irregular Galaxies , 2002, astro-ph/0209012.

[78]  C. Esteban,et al.  Optical Recombination Lines of Heavy Elements in Giant Extragalactic H II Regions , 2002, astro-ph/0208313.

[79]  G. Meynet,et al.  Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution , 2002, astro-ph/0205370.

[80]  C. Fischer,et al.  Breit-Pauli energy levels and transition rates for nitrogen-like and oxygen-like sequences , 2002 .

[81]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[82]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[83]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[84]  M. Edmunds,et al.  On the Cosmic Origins of Carbon and Nitrogen , 2000, astro-ph/0004299.

[85]  B. McLaughlin,et al.  Electron collisional excitation of Ne III: (1s22s22p4 3P2,1,0,1D2,1S0) fine-structure transitions , 2000 .

[86]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[87]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[88]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[89]  T. Thuan,et al.  Heavy-Element Abundances in Blue Compact Galaxies , 1998, astro-ph/9811387.

[90]  R. Terlevich,et al.  Carbon in Spiral Galaxies from HUBBLE SPACE TELESCOPE Spectroscopy , 1998, astro-ph/9810026.

[91]  F. Keenan,et al.  Excitation Rate Coefficients for Fine-Structure Transitions in O III , 1998 .

[92]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[93]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[94]  C. Ramsbottom,et al.  Effective Collision Strengths for Electron-Impact Excitation of Triphy Ionized Argon , 1997 .

[95]  F. Matteucci,et al.  Chemical evolution of dwarf irregular and blue compact galaxies , 2011, 1102.4197.

[96]  K. Nomoto,et al.  The Lifetime of Type Ia Supernova Progenitors Deduced from the Chemical Evolution in the Solar Neighborhood , 1996 .

[97]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen: A Critical Data Compilation , 1996 .

[98]  V. Lipovetsky,et al.  Heavy element abundances in a new sample of low-metallicity blue compact galaxies , 1995 .

[99]  E.Terlevich,et al.  The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations , 1994, astro-ph/9411011.

[100]  S. Woosley,et al.  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[101]  D. Garnett Electron temperature variations and the measurement of nebular abundances , 1992 .

[102]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[103]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[104]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[105]  F. Matteucci,et al.  Nitrogen and oxygen evolution in dwarf irregular galaxies , 1985 .

[106]  P G Burke,et al.  Electron-impact-excitation collision strengths for Be-like ions: II. Intermediate-energy region and collision rates , 1985 .

[107]  J. Melnick,et al.  Warmers: the missing link between Starburst and Seyfert galaxies , 1985 .

[108]  C. Mendoza,et al.  Transition probabilities for forbidden lines in the 3p/2/ configuration. - II , 1982 .

[109]  C. Zeippen Transition probabilities for forbidden lines in the 2p/3/ configuration , 1982 .

[110]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[111]  M. Peimbert Temperature Determinations of H II Regions , 1967 .

[112]  E. Salpeter The Luminosity function and stellar evolution , 1955 .