Lysine deacetylases and mitochondrial dynamics in neurodegeneration.

[1]  E. Bossy‐Wetzel,et al.  Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: Neuroprotection by SIRT3 and PGC-1α , 2013, Neurobiology of Disease.

[2]  Dudley Lamming,et al.  Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators , 2013, Science.

[3]  Maki Maeda,et al.  Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology , 2013, Journal of Cell Science.

[4]  O. Schlüter,et al.  Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease , 2012, EMBO molecular medicine.

[5]  E. Verdin,et al.  Mitochondrial sirtuins: regulators of protein acylation and metabolism , 2012, Trends in Endocrinology & Metabolism.

[6]  N. Jeon,et al.  HDAC6 Inhibitor Blocks Amyloid Beta-Induced Impairment of Mitochondrial Transport in Hippocampal Neurons , 2012, PloS one.

[7]  Samuel Frank,et al.  Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset , 2012, Human Genetics.

[8]  E. Seto,et al.  Modulation of Histone Deacetylase 6 (HDAC6) Nuclear Import and Tubulin Deacetylase Activity through Acetylation* , 2012, The Journal of Biological Chemistry.

[9]  Y. Yoo,et al.  Histone deacetylase inhibitors induce mitochondrial elongation , 2012, Journal of cellular physiology.

[10]  Xiao-Ming Yin,et al.  Mitophagy: mechanisms, pathophysiological roles, and analysis , 2012, Biological chemistry.

[11]  P. Reddy,et al.  Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage , 2012, The Journal of cell biology.

[12]  R. de Cabo,et al.  SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. , 2012, Cell metabolism.

[13]  L. Guarente,et al.  SIRT2 Ablation Has No Effect on Tubulin Acetylation in Brain, Cholesterol Biosynthesis or the Progression of Huntington's Disease Phenotypes In Vivo , 2012, PloS one.

[14]  H. T. Kang,et al.  Nicotinamide-induced Mitophagy , 2012, The Journal of Biological Chemistry.

[15]  Kevin Struhl,et al.  SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation , 2012, Nature.

[16]  N. Plesnila,et al.  Inhibition of Drp1 provides neuroprotection in vitro and in vivo , 2012, Cell Death and Differentiation.

[17]  W. Saxton,et al.  Parkinson's Disease–Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria , 2012, PLoS genetics.

[18]  S. Strack,et al.  Allosteric Modulation of Drp1 Mechanoenzyme Assembly and Mitochondrial Fission by the Variable Domain* , 2012, The Journal of Biological Chemistry.

[19]  H. Ke,et al.  Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases , 2012, Cell.

[20]  Hyoung-Gon Lee,et al.  Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease , 2012, Journal of neurochemistry.

[21]  L. Scorrano,et al.  Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration , 2012, Acta Neuropathologica.

[22]  S. Singhal,et al.  Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging , 2012, Molecular and Cellular Biochemistry.

[23]  Vishwanath T. Anekonda,et al.  Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. , 2012, Human molecular genetics.

[24]  P. Aebischer,et al.  Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function , 2012, Human molecular genetics.

[25]  Qian Cai,et al.  Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration , 2012, Nature Reviews Neuroscience.

[26]  S. Przedborski,et al.  Mitochondrial Dynamics and Bioenergetic Dysfunction Is Associated with Synaptic Alterations in Mutant SOD1 Motor Neurons , 2012, The Journal of Neuroscience.

[27]  P. Matthias,et al.  Interplay between histone deacetylases and autophagy ‐ from cancer therapy to neurodegeneration , 2012, Immunology and cell biology.

[28]  Takeshi Kimura,et al.  Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice. , 2011, Journal of molecular and cellular cardiology.

[29]  P. Reddy,et al.  Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. , 2011, Human molecular genetics.

[30]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[31]  H. Ouyang,et al.  Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini , 2011, The Journal of Biological Chemistry.

[32]  Elizabeth M. Tomkinson,et al.  The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. , 2011, Human molecular genetics.

[33]  W. Robberecht,et al.  HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease , 2011, Nature Medicine.

[34]  Sameer B. Shah,et al.  Misfolded SOD1 Associated with Motor Neuron Mitochondria Alters Mitochondrial Shape and Distribution Prior to Clinical Onset , 2011, PloS one.

[35]  P. Reddy,et al.  Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. , 2011, Human molecular genetics.

[36]  O. Shupliakov,et al.  Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission , 2011, The EMBO journal.

[37]  E. Schon,et al.  Mitochondria: The Next (Neurode)Generation , 2011, Neuron.

[38]  C. Moussa,et al.  Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. , 2011, Human molecular genetics.

[39]  S. Minotti,et al.  Calcium dysregulation, mitochondrial pathology and protein aggregation in a culture model of amyotrophic lateral sclerosis: Mechanistic relationship and differential sensitivity to intervention , 2011, Neurobiology of Disease.

[40]  Ann E. Frazier,et al.  MiD49 and MiD51, new components of the mitochondrial fission machinery , 2011, EMBO reports.

[41]  R. Betensky,et al.  Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease , 2011, BMC Medical Genetics.

[42]  O. Shirihai,et al.  The interplay between mitochondrial dynamics and mitophagy. , 2011, Antioxidants & redox signaling.

[43]  Huiyi Jiang,et al.  HDAC6 α-tubulin deacetylase: A potential therapeutic target in neurodegenerative diseases , 2011, Journal of the Neurological Sciences.

[44]  Qian Cai,et al.  Regulation of axonal mitochondrial transport and its impact on synaptic transmission , 2011, Neuroscience Research.

[45]  P. Hemachandra Reddy,et al.  Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. , 2011, Human molecular genetics.

[46]  T. Dawson,et al.  PARIS (ZNF746) Repression of PGC-1α Contributes to Neurodegeneration in Parkinson's Disease , 2011, Cell.

[47]  K. Mihara,et al.  Molecular mechanisms and physiologic functions of mitochondrial dynamics. , 2011, Journal of biochemistry.

[48]  S. Przedborski,et al.  Mitophagy: the latest problem for Parkinson's disease. , 2011, Trends in molecular medicine.

[49]  Mark Ellisman,et al.  MUTANT HUNTINGTIN BINDS THE MITOCHONDRIAL FISSION GTPASE DRP1 AND INCREASES ITS ENZYMATIC ACTIVTY , 2011, Nature Medicine.

[50]  Min Liu,et al.  Parkin Ubiquitinates Drp1 for Proteasome-dependent Degradation , 2011, The Journal of Biological Chemistry.

[51]  J. Holloszy,et al.  Does calorie restriction induce mitochondrial biogenesis? A reevaluation , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[52]  C. Creppe,et al.  Elongator: An Ancestral Complex Driving Transcription and Migration through Protein Acetylation , 2011, Journal of biomedicine & biotechnology.

[53]  O. Riess,et al.  Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease , 2011, Molecular Neurodegeneration.

[54]  A. Schapira,et al.  Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. , 2010, Human molecular genetics.

[55]  B. Lüscher,et al.  SIRT2 regulates NF-κB-dependent gene expression through deacetylation of p65 Lys310 , 2010, Journal of Cell Science.

[56]  R. Youle,et al.  Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells , 2010, The Journal of cell biology.

[57]  R. Lightowlers,et al.  Could successful (mitochondrial) networking help prevent Huntington's disease? , 2010, EMBO molecular medicine.

[58]  Ernesto Carafoli,et al.  Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli , 2010, EMBO molecular medicine.

[59]  R. Youle,et al.  Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL , 2010, The Journal of cell biology.

[60]  M. Cozzolino,et al.  Glutaredoxin 2 prevents aggregation of mutant SOD1 in mitochondria and abolishes its toxicity. , 2010, Human molecular genetics.

[61]  M. Goodman,et al.  The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation , 2010, Proceedings of the National Academy of Sciences.

[62]  C. Jacq,et al.  Posttranscriptional control of mitochondrial biogenesis: Spatio‐temporal regulation of the protein import process , 2010, FEBS letters.

[63]  M. Beal,et al.  Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. , 2010, Human molecular genetics.

[64]  Tobias Rumpf,et al.  Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). , 2010, Biochimica et biophysica acta.

[65]  M. Dietrich,et al.  Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity , 2010, The Journal of Neuroscience.

[66]  E. Cattaneo,et al.  Neuroprotection and brain cholesterol biosynthesis in Huntington’s disease , 2010, Proceedings of the National Academy of Sciences.

[67]  Carsten Janke,et al.  Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton , 2010, Trends in Neurosciences.

[68]  Huabing Zhang,et al.  Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis , 2010, PloS one.

[69]  Kyle V. Butler,et al.  Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. , 2010, Journal of the American Chemical Society.

[70]  S. Ferreira,et al.  Amyloid-β Peptide Oligomers Disrupt Axonal Transport through an NMDA Receptor-Dependent Mechanism That Is Mediated by Glycogen Synthase Kinase 3β in Primary Cultured Hippocampal Neurons , 2010, The Journal of Neuroscience.

[71]  J. Oliveira Nature and cause of mitochondrial dysfunction in Huntington’s disease: focusing on huntingtin and the striatum , 2010, Journal of neurochemistry.

[72]  Xiongwei Zhu,et al.  A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease. , 2010, Journal of Alzheimer's disease : JAD.

[73]  P. Bertrand Inside HDAC with HDAC inhibitors. , 2010, European journal of medicinal chemistry.

[74]  D. Edelman,et al.  HDAC6 Regulates Mitochondrial Transport in Hippocampal Neurons , 2010, PloS one.

[75]  K. Lim,et al.  Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy , 2010, The Journal of cell biology.

[76]  R. Schnellmann,et al.  SRT1720 Induces Mitochondrial Biogenesis and Rescues Mitochondrial Function after Oxidant Injury in Renal Proximal Tubule Cells , 2010, Journal of Pharmacology and Experimental Therapeutics.

[77]  Christian Neri,et al.  SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis , 2010, Proceedings of the National Academy of Sciences.

[78]  D. Sulzer,et al.  CARGO RECOGNITION FAILURE IS RESPONSIBLE FOR INEFFICIENT AUTOPHAGY IN HUNTINGTON’S DISEASE , 2010, Nature Neuroscience.

[79]  Joo-Yong Lee,et al.  HDAC6 controls autophagosome maturation essential for ubiquitin‐selective quality‐control autophagy , 2010, The EMBO journal.

[80]  Y. Yoon,et al.  Perturbations in Mitochondrial Dynamics Induced by Human Mutant PINK1 Can Be Rescued by the Mitochondrial Division Inhibitor mdivi-1* , 2010, The Journal of Biological Chemistry.

[81]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[82]  M. Tarnopolsky,et al.  Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[83]  R. Garofalo,et al.  SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1♦ , 2010, The Journal of Biological Chemistry.

[84]  Jian-Hong Deng,et al.  NAD+-dependent Deacetylase SIRT3 Regulates Mitochondrial Protein Synthesis by Deacetylation of the Ribosomal Protein MRPL10* , 2009, The Journal of Biological Chemistry.

[85]  Richard Reynolds,et al.  HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage , 2009, Nature Neuroscience.

[86]  H. Kawamata,et al.  Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. , 2009, Human molecular genetics.

[87]  B. Viollet,et al.  AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol , 2009, Diabetes.

[88]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[89]  Rachel M. Devay,et al.  Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion , 2009, The Journal of cell biology.

[90]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[91]  H. T. Kang,et al.  Nicotinamide enhances mitochondria quality through autophagy activation in human cells , 2009, Aging cell.

[92]  J. McCaffery,et al.  Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. , 2009, Molecular biology of the cell.

[93]  George Perry,et al.  Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease , 2009, The Journal of Neuroscience.

[94]  Satoshi O. Suzuki,et al.  Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice , 2009, Nature Cell Biology.

[95]  Z. Ungvari,et al.  Resveratrol induces mitochondrial biogenesis in endothelial cells , 2009, American journal of physiology. Heart and circulatory physiology.

[96]  C. Marson,et al.  Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer. , 2009, Anti-cancer agents in medicinal chemistry.

[97]  V. Choubey,et al.  PGC-1α and PGC-1β Regulate Mitochondrial Density in Neurons* , 2009, The Journal of Biological Chemistry.

[98]  P. Puigserver,et al.  AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity , 2009, Nature.

[99]  Anastasia Kralli,et al.  Transcriptional control of mitochondrial biogenesis and function. , 2009, Annual review of physiology.

[100]  J. Meador-Woodruff,et al.  Identification of novel targets for PGC-1alpha and histone deacetylase inhibitors in neuroblastoma cells. , 2009, Biochemical and biophysical research communications.

[101]  J. Andrich,et al.  PGC-1alpha as modifier of onset age in Huntington disease , 2009, Molecular Neurodegeneration.

[102]  P. Kruk,et al.  Deacetylation of cortactin by SIRT1 promotes cell migration , 2009, Oncogene.

[103]  B. Landwehrmeyer,et al.  The gene coding for PGC-1α modifies age at onset in Huntington's Disease , 2009, Molecular Neurodegeneration.

[104]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[105]  Kwang Youl Lee,et al.  Acetylation of Sirt2 by p300 attenuates its deacetylase activity. , 2008, Biochemical and biophysical research communications.

[106]  P. Bernardi,et al.  Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria , 2008, Proceedings of the National Academy of Sciences.

[107]  N. Ruderman,et al.  SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1 , 2008, Journal of Biological Chemistry.

[108]  L. Thompson,et al.  Therapeutic application of histone deacetylase inhibitors for central nervous system disorders , 2008, Nature Reviews Drug Discovery.

[109]  P. Dolan,et al.  Histone deacetylase 6 interacts with the microtubule‐associated protein tau , 2008, Journal of neurochemistry.

[110]  E. Seto,et al.  Lysine acetylation: codified crosstalk with other posttranslational modifications. , 2008, Molecular cell.

[111]  V. Longo,et al.  SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. , 2008, Cell metabolism.

[112]  M. K. Pflum,et al.  Isoform-selective histone deacetylase inhibitors. , 2008, Chemical Society reviews.

[113]  P. Atadja,et al.  Inhibition of Histone Deacetylases Promotes Ubiquitin-Dependent Proteasomal Degradation of DNA Methyltransferase 1 in Human Breast Cancer Cells , 2008, Molecular Cancer Research.

[114]  Jörg Vervoorts,et al.  The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility , 2008, The Journal of cell biology.

[115]  E. Seto,et al.  The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men , 2008, Nature Reviews Molecular Cell Biology.

[116]  Dawen Cai,et al.  Tubulin modifications and their cellular functions. , 2008, Current opinion in cell biology.

[117]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[118]  P. Finn,et al.  Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. , 2008, The Biochemical journal.

[119]  Cuiling Li,et al.  Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation , 2008, Cell.

[120]  F. Alt,et al.  Mice Lacking Histone Deacetylase 6 Have Hyperacetylated Tubulin but Are Viable and Develop Normally , 2008, Molecular and Cellular Biology.

[121]  G. Perry,et al.  Increased Autophagic Degradation of Mitochondria in Alzheimer Disease , 2007, Autophagy.

[122]  J. McCaffery,et al.  Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum , 2007, Cell.

[123]  Ruben Abagyan,et al.  Sirtuin 2 Inhibitors Rescue α-Synuclein-Mediated Toxicity in Models of Parkinson's Disease , 2007, Science.

[124]  Sharon Y. R. Dent,et al.  HDAC6 modulates cell motility by altering the acetylation level of cortactin. , 2007, Molecular cell.

[125]  B. Spiegelman,et al.  AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α , 2007, Proceedings of the National Academy of Sciences.

[126]  M. Grunstein,et al.  Functions of site-specific histone acetylation and deacetylation. , 2007, Annual review of biochemistry.

[127]  M. Hild,et al.  HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS , 2007, Nature.

[128]  A. Nunomura,et al.  Autophagocytosis of mitochondria is prominent in Alzheimer disease , 2007, Journal of the Neurological Sciences.

[129]  M. Tainsky,et al.  Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin , 2007, Molecular and Cellular Biochemistry.

[130]  J. Russell,et al.  Localization of the transcriptional coactivator PGC‐1α to GABAergic neurons during maturation of the rat brain , 2007, The Journal of comparative neurology.

[131]  H. Waterham,et al.  A lethal defect of mitochondrial and peroxisomal fission. , 2007, The New England journal of medicine.

[132]  J. Milbrandt,et al.  Resveratrol stimulates AMP kinase activity in neurons , 2007, Proceedings of the National Academy of Sciences.

[133]  Toshihiko Oka,et al.  Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission* , 2007, Journal of Biological Chemistry.

[134]  Fabrice P Cordelières,et al.  Histone Deacetylase 6 Inhibition Compensates for the Transport Deficit in Huntington's Disease by Increasing Tubulin Acetylation , 2007, The Journal of Neuroscience.

[135]  Bin Zhang,et al.  Sirtuin 2, a Mammalian Homolog of Yeast Silent Information Regulator-2 Longevity Regulator, Is an Oligodendroglial Protein That Decelerates Cell Differentiation through Deacetylating α-Tubulin , 2007, The Journal of Neuroscience.

[136]  Eric Ravussin,et al.  Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans , 2007, PLoS medicine.

[137]  M. Tainsky,et al.  Microtubule Deacetylases, SirT2 and HDAC6, in the Nervous System , 2007, Neurochemical Research.

[138]  P. Puigserver,et al.  Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α , 2006, Cell.

[139]  Dawen Cai,et al.  Microtubule Acetylation Promotes Kinesin-1 Binding and Transport , 2006, Current Biology.

[140]  M. Hayden,et al.  Mitochondrial-Dependent Ca2+ Handling in Huntington's Disease Striatal Cells: Effect of Histone Deacetylase Inhibitors , 2006, The Journal of Neuroscience.

[141]  Rachel M. Devay,et al.  Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1 , 2006, Cell.

[142]  Priyanka Tiwari,et al.  Acute Impairment of Mitochondrial Trafficking by β-Amyloid Peptides in Hippocampal Neurons , 2006, Journal of Neuroscience.

[143]  D. Chan Mitochondrial fusion and fission in mammals. , 2006, Annual review of cell and developmental biology.

[144]  R. D'Hooge,et al.  Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling , 2006, Cell.

[145]  Yingming Zhao,et al.  HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. , 2006, Molecular cell.

[146]  P. Puigserver,et al.  GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. , 2006, Cell metabolism.

[147]  F. Alt,et al.  SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. , 2006, Genes & development.

[148]  L. Guarente,et al.  Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. , 2006, Genes & development.

[149]  D. Kelly,et al.  PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. , 2006, The Journal of clinical investigation.

[150]  R. de Cabo,et al.  Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[151]  E. Seto,et al.  Acetylation and deacetylation of non-histone proteins. , 2005, Gene.

[152]  R. Kopito,et al.  HDAC6 and Microtubules Are Required for Autophagic Degradation of Aggregated Huntingtin* , 2005, Journal of Biological Chemistry.

[153]  P. Hollenbeck,et al.  The axonal transport of mitochondria , 2005, Journal of Cell Science.

[154]  Emilio Clementi,et al.  Calorie Restriction Promotes Mitochondrial Biogenesis by Inducing the Expression of eNOS , 2005, Science.

[155]  J. McCaffery,et al.  Dnm1 forms spirals that are structurally tailored to fit mitochondria , 2005, The Journal of cell biology.

[156]  Eric Verdin,et al.  Histone deacetylase HDAC8 associates with smooth muscle α‐actin and is essential for smooth muscle cell contractility , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[157]  N. Hamasaki,et al.  Mitochondrial Transcription Factor A in the Maintenance of Mitochondrial DNA , 2005, Annals of the New York Academy of Sciences.

[158]  S. Nemoto,et al.  SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1α* , 2005, Journal of Biological Chemistry.

[159]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[160]  Jiandie D. Lin,et al.  Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1α Null Mice , 2004, Cell.

[161]  E. Seto,et al.  Regulation of histone deacetylase activities , 2004, Journal of cellular biochemistry.

[162]  J. McCaffery,et al.  Structural Basis of Mitochondrial Tethering by Mitofusin Complexes , 2004, Science.

[163]  Myriam Gorospe,et al.  Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase , 2004, Science.

[164]  C. Ross,et al.  Protein aggregation and neurodegenerative disease , 2004, Nature Medicine.

[165]  M. Pericak-Vance,et al.  Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A , 2004, Nature Genetics.

[166]  J. Vance,et al.  The Deacetylase HDAC6 Regulates Aggresome Formation and Cell Viability in Response to Misfolded Protein Stress , 2003, Cell.

[167]  Jiandie D. Lin,et al.  An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Stuart L Schreiber,et al.  Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[169]  E. Seto,et al.  Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. , 2003, Current opinion in genetics & development.

[170]  P. Matthias,et al.  HDAC‐6 interacts with and deacetylates tubulin and microtubules in vivo , 2003, The EMBO journal.

[171]  G. Fishman,et al.  Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[172]  J. Denu,et al.  The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. , 2003, Molecular cell.

[173]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[174]  Xiao-Fan Wang,et al.  HDAC6 is a microtubule-associated deacetylase , 2002, Nature.

[175]  N. Bertos,et al.  Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. , 2002, Nucleic acids research.

[176]  A. Nunomura,et al.  Mitochondrial abnormalities in Alzheimer disease , 2000, Neurobiology of Aging.

[177]  Tony Kouzarides,et al.  Acetylation: a regulatory modification to rival phosphorylation? , 2000, The EMBO journal.

[178]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[179]  J. Brion,et al.  Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease. , 1996, Journal of neuropathology and experimental neurology.

[180]  J. Vicencio,et al.  PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. , 2012, Mitochondrion.

[181]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[182]  R. Swerdlow,et al.  Regulation of neuron mitochondrial biogenesis and relevance to brain health. , 2010, Biochimica et biophysica acta.

[183]  E. Olson,et al.  The many roles of histone deacetylases in development and physiology: implications for disease and therapy , 2009, Nature Reviews Genetics.

[184]  P. Atadja,et al.  The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance , 2009, Nature Immunology.

[185]  F. Dequiedt,et al.  Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. , 2002, Molecular cell.