Thermal Rearrangement of Sulfamoyl Azides: Reactivity and Mechanistic Study.

The rearrangement of sulfamoyl azides under thermal conditions to form a C-C bond while breaking two C-N bonds is reported. Mechanistic study shows that this reaction goes through a Curtius-type rearrangement to form a 1,1-diazene, then which rearranges possibly through both a concerted rearrangement process and a stepwise radical process. This rearrangement could be used in the synthesis of complex biologically active molecules, such as sterols, and piperine derivatives.

[1]  Qiao Sun,et al.  The decomposition of benzenesulfonyl azide: a matrix isolation and computational study. , 2017, Physical chemistry chemical physics : PCCP.

[2]  Niklas O. Thiel,et al.  Copper(i)-catalysed transfer hydrogenations with ammonia borane. , 2017, Chemical communications.

[3]  D. Dickie,et al.  The copper-catalysed Suzuki-Miyaura coupling of alkylboron reagents: disproportionation of anionic (alkyl)(alkoxy)borates to anionic dialkylborates prior to transmetalation. , 2016, Chemical communications.

[4]  V. Tiwari,et al.  An efficient one-pot synthesis of N,N′-disubstituted ureas and carbamates from N-acylbenzotriazoles , 2016 .

[5]  L. Wojtas,et al.  Intramolecular 1,5-C(sp3)–H radical amination via Co(ii)-based metalloradical catalysis for five-membered cyclic sulfamides , 2016, Chemical science.

[6]  L. Meijer,et al.  Novel optimization of valmerins (tetrahydropyrido[1,2-a]isoindolones) as potent dual CDK5/GSK3 inhibitors. , 2016, European journal of medicinal chemistry.

[7]  C. Xia,et al.  Curtius-like Rearrangement of an Iron-Nitrenoid Complex and Application in Biomimetic Synthesis of Bisindolylmethanes. , 2016, Organic letters.

[8]  Uroš Grošelj,et al.  Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides , 2016, Molecular Diversity.

[9]  B. Pentelute,et al.  C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates. , 2016, Organic letters.

[10]  Guigen Li,et al.  Carboxylate-Assisted Iridium-Catalyzed C-H Amination of Arenes with Biologically Relevant Alkyl Azides. , 2016, Chemistry.

[11]  Guangbin Dong,et al.  Efficient Benzimidazolidinone Synthesis via Rhodium-Catalyzed Double-Decarbonylative C-C Activation/Cycloaddition between Isatins and Isocyanates. , 2016, ACS catalysis.

[12]  Mei-Hua Shen,et al.  The Reaction of 2,3-Dimethylimidazole-1-sulfonyl Azide Triflate with 3-Substituted Indoles: Reactivity and Scope. , 2015, Organic letters.

[13]  T. Fukuyama,et al.  Conversion of Ester Moieties to 4-Bromophenyl Groups via Electrocyclic Reaction of Dibromocyclopropanes. , 2015, Organic letters.

[14]  Sung Wng Kim,et al.  Two dimensional inorganic electride-promoted electron transfer efficiency in transfer hydrogenation of alkynes and alkenes† †Electronic supplementary information (ESI) available: Experimental details and characterization. See DOI: 10.1039/c5sc00933b , 2015, Chemical science.

[15]  Sukbok Chang,et al.  Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination. , 2015, Accounts of chemical research.

[16]  Xiaoqing Zeng,et al.  Photochemistry of matrix isolated (trifluoromethyl)sulfonyl azide, CF₃SO₂N₃. , 2015, The journal of physical chemistry. A.

[17]  S. DiMagno,et al.  Reactivities of vinyl azides and their recent applications in nitrogen heterocycle synthesis. , 2015, Organic & biomolecular chemistry.

[18]  Dingqing Li,et al.  Decomposition of fluorophosphoryl diazide: a joint experimental and theoretical study. , 2015, Physical chemistry chemical physics : PCCP.

[19]  Lei Liu,et al.  Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides. , 2014, Chemistry.

[20]  J. Walton,et al.  A clean and selective radical homocoupling employing carboxylic acids with titania photoredox catalysis. , 2014, Organic letters.

[21]  E. Gallo,et al.  Organic azides: "energetic reagents" for the intermolecular amination of C-H bonds. , 2014, Chemical communications.

[22]  A. Kuzmin,et al.  Computational study of singlet and triplet sulfonylnitrenes insertion into the C―C or C―H bonds of ethylene , 2014 .

[23]  X. Zhang,et al.  Chemoselective amination of propargylic C(sp³)-H bonds by cobalt(II)-based metalloradical catalysis. , 2014, Angewandte Chemie.

[24]  A. Kuzmin,et al.  Computational study of singlet and triplet sulfonylnitrenes insertion into 1,3‐butadienes: 1,2‐ or 1,4‐cycloaddition? , 2014 .

[25]  A. Kuzmin,et al.  Sulfonyl nitrenes from different sources: computational study of formation and transformations , 2014 .

[26]  T. Uchida,et al.  Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C-H amination using azide compounds as nitrene precursors. , 2014, Chemical record.

[27]  T. Driver C-H bond functionalization: An aminated reaction. , 2013, Nature chemistry.

[28]  Jiang Li,et al.  Al-containing mesoporous carbon as effective catalysts for the chemoselective reduction of carbon–carbon double bonds in nitrostilbene derivatives , 2013 .

[29]  J. Bower,et al.  Directing group enhanced carbonylative ring expansions of amino-substituted cyclopropanes: rhodium-catalyzed multicomponent synthesis of N-heterobicyclic enones. , 2013, Journal of the American Chemical Society.

[30]  Xiaoqing Zeng,et al.  Thermally persistent fluorosulfonyl nitrene and unexpected formation of the fluorosulfonyl radical. , 2013, Journal of the American Chemical Society.

[31]  L. Wojtas,et al.  Stereoselective radical amination of electron-deficient C(sp3)-H bonds by Co(II)-based metalloradical catalysis: direct synthesis of α-amino acid derivatives via α-C-H amination. , 2012, Organic letters.

[32]  J. Xue,et al.  Ultrafast time resolved studies of the photochemistry of acyl and sulfonyl azides. , 2012, Physical chemistry chemical physics : PCCP.

[33]  Shubham Vyas,et al.  Direct observation of a sulfonyl azide excited state and its decay processes by ultrafast time-resolved IR spectroscopy. , 2012, Journal of the American Chemical Society.

[34]  F. Shi,et al.  Synthesis of substituted 1H-indazoles from arynes and hydrazones. , 2012, The Journal of organic chemistry.

[35]  T. Hatakeyama,et al.  Cross-coupling of non-activated chloroalkanes with aryl Grignard reagents in the presence of iron/N-heterocyclic carbene catalysts. , 2012, Organic letters.

[36]  L. Wojtas,et al.  Chemoselective intramolecular allylic C–H aminationversus CC aziridination through Co(II)-based metalloradical catalysis , 2011 .

[37]  V. Fokin,et al.  Synthesis and reactivity of sulfamoyl azides and 1-sulfamoyl-1,2,3-triazoles. , 2011, Organic letters.

[38]  V. Gevorgyan,et al.  Rh-catalyzed transannulation of N-tosyl-1,2,3-triazoles with terminal alkynes. , 2011, Organic letters.

[39]  F. Kakiuchi,et al.  Ruthenium-catalyzed conversion of sp3 C-O bonds in ethers to C-C bonds using triarylboroxines. , 2011, Organic letters.

[40]  X. Zhang,et al.  Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. , 2011, Chemical Society reviews.

[41]  L. Wojtas,et al.  Selective intramolecular C-H amination through the metalloradical activation of azides: synthesis of 1,3-diamines under neutral and nonoxidative conditions. , 2010, Angewandte Chemie.

[42]  A. Kaur,et al.  Synthesis and antileishmanial activity of piperoyl-amino acid conjugates. , 2010, European journal of medicinal chemistry.

[43]  T. Okada,et al.  Difluoro-lambda3-bromane-induced Hofmann rearrangement of sulfonamides: synthesis of sulfamoyl fluorides. , 2009, Journal of the American Chemical Society.

[44]  Mihyong Kim,et al.  Synthesis of 1,3-diamines through rhodium-catalyzed C-H insertion. , 2009, Angewandte Chemie.

[45]  C. Hadad,et al.  Computational study of the Curtius-like rearrangements of phosphoryl, phosphinyl, and phosphinoyl azides and their corresponding nitrenes. , 2007, The Journal of organic chemistry.

[46]  E. Goddard-Borger,et al.  An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. , 2007, Organic letters.

[47]  E. Gallo,et al.  Coordination chemistry of organic azides and amination reactions catalyzed by transition metal complexes , 2006 .

[48]  Stefan Bräse,et al.  Organic azides: an exploding diversity of a unique class of compounds. , 2005, Angewandte Chemie.

[49]  M. Yus,et al.  Tandem Intramolecular Carbolithiation‐Lithium/Zinc Transmetallation and Applications to Carbon−Carbon Bond‐Forming Reactions , 2004 .

[50]  J. Sheu,et al.  Polyene synthesis. Ready construction of retinol-carotene fragments, (.+-.)-6(E)-LTB3 leukotrienes, and corticrocin , 1990 .

[51]  E. Scriven,et al.  Azides: their preparation and synthetic uses , 1988 .

[52]  P. Gölitz,et al.  Alternative precursors to 1,4-acyl alkyl biradicals: cyclic N-acyl-1,1-diazenes , 1984 .

[53]  P. Schultz,et al.  Photochemistry of 1,1-diazenes. Direct and sensitized photolyses of N-(2,2,5,5-tetramethylpyrrolidyl)nitrene, dl-N-(2,5-diethyl-2,5-dimethylpyrrolidyl)nitrene, and N-(2,2,6,6-tetramethylpiperidyl)nitrene , 1982 .

[54]  P. Dervan,et al.  1,1-Di-tert-butyldiazene , 1982 .

[55]  P. Schultz,et al.  Direct studies of 1,1-diazenes. Syntheses, infrared and electronic spectra, and kinetics of the thermal decomposition of N-(2,2,6,6-tetramethylpiperidyl)nitrene and N-(2,2,5,5-tetramethylpyrrolidyl)nitrene , 1982 .

[56]  R. Abramovitch,et al.  The decomposition of .beta.-phenethylsulfonyl azides. Solution chemistry and flash vacuum pyrolysis , 1981 .

[57]  S. Ozaki Recent Advances in Isocyanate Chemistry , 1972 .

[58]  D. Deitchman,et al.  Sulfamoyl azides. Hydrolysis rates and hypotensive activity. , 1972, Journal of medicinal chemistry.

[59]  V. Uma,et al.  Aromatic substitution by sulfonyl nitrenes. Singlet or triplet reactive intermediates , 1969 .

[60]  G. L'abbé Decomposition and addition reactions of organic azides , 1969 .

[61]  D. Breslow,et al.  Thermal reactions of sulfonyl azides , 1969 .

[62]  R. Abramovitch,et al.  Intramolecular cyclizations of sulfonyl nitrenes , 1969 .

[63]  W. Lwowski,et al.  Curtius and Lossen Rearrangements. I. The Benzenesulfonyl System1 , 1965 .

[64]  L. A. Carpino Oxidation of N-Aminodihydroisoindoles. Synthesis of cis- and trans-1,2-Diphenylbenzocyclobutenes1-3 , 1962 .

[65]  J. Lombardino,et al.  Azo Compounds.1 Oxidation of 1,1-Disubstituted Hydrazines. The Synthesis and Oxidation of cis- and trans-1-Amino-2,6-diphenylpiperidine. A New Stereospecific Ring Closure , 1957 .

[66]  Theodor Curtius Ueber Stickstoffwasserstoffsäure (Azoimid) N3H , 1890 .

[67]  T. Shioiri,et al.  4.4 – Degradation Reactions , 1991 .

[68]  M. J. Harger,et al.  Photolysis of diphenyl- and t-butyl(phenyl)-phosphinic azides: dimethyl sulphide as a nitrene trap, and its influence on the Curtius-like rearrangement , 1984 .

[69]  C. Wentrup Carbenes and Nitrenes in Heterocyclic Chemistry: Intramolecular Reactions , 1981 .

[70]  J. Griffiths Arylsulphamoyl azides. An improved synthesis of chlorosulphonyl azide and its reaction with arylamines , 1971 .

[71]  R. Abramovitch,et al.  Curtius-type rearrangement of a sulphonyl azide , 1969 .

[72]  Theodor Curtius Umlagerung von Säureaziden, R. CON3, in Derivate alkylirter Amine (Ersatz von Carboxyl durch Amid) , 1894 .