Decision Making System for Regulation of a Bimodal Urban Transportation Network, Associating a Classical and a Multi-Agent Approaches

To offer high quality services, when users are increasingly demanding and competition more and more hard, is now a major problem that transportation companies are faced with. So, ensuring a regular traffic needs to identify the randomly occurring disturbances that affect the transportation system and to eliminate or reduce their impacts on the traffic. This paper presents a decision support system TRSS (Traffic Regulation Support System). TRSS is a supervision environment for the regulation of urban transportation system. TRSS (tram and bus) is based on the regulation operator decision-making process. It provides the operator with the information he needs to identify disturbances and evaluate potential corrective actions to be carried out, according to the regulation strategy he has selected. The first part of the paper presents the decision model we work with. The second part deals with the functional model used in the decision support system. Decision support system for transportation and characteristics of a DSS for a transportation system are described in the third part. In the fourth part, we present the components of the decision-making TRSS supervision tool. In the fifth part, we present the criteria of evaluation and the sixth part is devoted to the presentation of the results.

[1]  John A. Campbell,et al.  Genetic-Fuzzy Systems for Financial Decision Making , 1994, IEEE/Nagoya-University World Wisepersons Workshop.

[2]  Pierre Borne,et al.  Decision support system for urban transportation networks , 2003, IEEE Trans. Syst. Man Cybern. Part C.

[3]  Horst Bunke,et al.  Similarity Measures for Structured Representations , 1993, EWCBR.

[4]  Pablo Gruer,et al.  Multi-agent approach to modeling and simulation of urban transportation systems , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[5]  W. T. Singleton,et al.  Man-machine systems , 1974 .

[6]  George R. S. Weir,et al.  ON MAN-MACHINE SYSTEMS , 2007 .

[7]  Pierre Borne,et al.  Multi-agent decision-support system for an urban transportation network , 2002, Proceedings of the 5th Biannual World Automation Congress.

[8]  Dennis Huisman,et al.  A Dynamic Approach to Vehicle Scheduling , 2001 .

[9]  Hakim Laïchour Modélisation multi-agent et aide à la décision : application à la régulation des correspondances dans les réseaux de transport urbain , 2002 .

[10]  Shangyao Yan,et al.  Multifleet routing and multistop flight scheduling for schedule perturbation , 1997 .

[11]  Hervé Mignot Sensibilite au contexte lors de l'evaluation de similarite en raisonnement a partir de cas , 1997 .

[12]  Sam R. Thangiah,et al.  Vehicle Routing with Time Windows using Genetic Algorithms , 1997 .

[13]  Pierre Borne,et al.  Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic , 2002, Math. Comput. Simul..

[14]  B Foraste,et al.  SYSTEMES D'AIDE A L'EXPLOITATION ET ALGORITHMES DE REGULATION D'UNE LIGNE D'AUTOBUS (EVALUATION PAR SIMULATION) , 1984 .

[15]  Li Xiang-yang Genetic algorithm for VRP , 2004 .

[16]  Aziz Soulhi Contribution de l'intelligence artificielle à l'aide à la décision dans la gestion des systèmes de transport urbain collectif , 2000 .

[17]  Nathalie Cassaigne,et al.  Predictive and reactive approaches to the train-scheduling problem: a knowledge management perspective , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[18]  Andrzej Osyczka,et al.  Multicriteria Design Optimization: Procedures and Applications , 1990 .

[19]  Besma Fayech Régulation des réseaux de transport multimodal : systèmes multi-agents et algorithmes évolutionnistes , 2003 .

[20]  C. Cure,et al.  Systèmes d'aide à l'exploitation et algorithmes de régulation (évaluation par simulation) , 1984 .

[21]  Thomas B. Sheridan,et al.  FORTY-FIVE YEARS OF MAN–MACHINE SYSTEMS: HISTORY AND TRENDS , 1985 .

[22]  Marc Sevaux,et al.  SART : un système d'aide à la décision pour la régulation d'un réseau de transport bimodal , 2005 .

[23]  Flavien Balbo Esac : un modèle d'interaction multi-agent utilisant l'environnement comme support actif de communication. Application à la gestion des transports urbains , 2000 .

[24]  Andrzej Turnau,et al.  Simulation support tool for real-time dispatching control in public transport , 1998 .

[25]  Y. Kodratoff,et al.  Knowledge Acquisition and Learning by Experience-The Role of Case-Specific Knowledge , 1995 .

[26]  M. Staroswiecki,et al.  Analysis of system reconfigurability using generic component models , 1998 .