Understanding Brown Trout Population Genetic Structure

[1]  D. Fraser,et al.  Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish , 2015, Evolution; international journal of organic evolution.

[2]  Rebekah A. Oomen,et al.  Genetic variability in reaction norms in fishes , 2015 .

[3]  Daniel E. Schindler,et al.  The portfolio concept in ecology and evolution , 2015 .

[4]  I. Koizumi,et al.  Life-history characteristics and landscape attributes as drivers of genetic variation, gene flow, and fine-scale population structure in northern Dolly Varden (Salvelinus malma malma) in Canada , 2015 .

[5]  N. Dulvy,et al.  Portfolio conservation of metapopulations under climate change. , 2015, Ecological applications : a publication of the Ecological Society of America.

[6]  B. Berejikian,et al.  Landscape factors affect the genetic population structure of Oncorhynchus mykiss populations in Hood Canal, Washington , 2015, Environmental Biology of Fishes.

[7]  W. R. Ardren,et al.  Fine-scale genetic structure of brook trout in a dendritic stream network , 2015, Conservation Genetics.

[8]  J. Hutchings Unintentional selection, unanticipated insights: introductions, stocking and the evolutionary ecology of fishes. , 2014, Journal of fish biology.

[9]  P. Gratton,et al.  The evolutionary jigsaw puzzle of the surviving trout (Salmo trutta L. complex) diversity in the Italian region. A multilocus Bayesian approach. , 2014, Molecular phylogenetics and evolution.

[10]  D. Bekkevold,et al.  Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms , 2014, PloS one.

[11]  A. Hoffmann,et al.  GENETIC ISOLATION BY ENVIRONMENT OR DISTANCE: WHICH PATTERN OF GENE FLOW IS MOST COMMON? , 2014, Evolution; international journal of organic evolution.

[12]  U. Schliewen,et al.  Genetic variation in brown trout Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the phylogeographic paradigm? , 2013, BMC Evolutionary Biology.

[13]  E. Bécares,et al.  Limitation and facilitation of one of the world's most invasive fish: an intercontinental comparison. , 2013, Ecology.

[14]  J. Merilä Evolution in response to climate change: In pursuit of the missing evidence , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  L. Bernatchez,et al.  Small-scale dispersal and population structure in stream-living brown trout (Salmo trutta) inferred by mark-recapture, pedigree reconstruction, and population genetics , 2012 .

[16]  L. Bernatchez,et al.  Short-Term Genetic Changes: Evaluating Effective Population Size Estimates in a Comprehensively Described Brown Trout (Salmo trutta) Population , 2012, Genetics.

[17]  L. Bernatchez,et al.  Life history and demographic determinants of effective/census size ratios as exemplified by brown trout (Salmo trutta) , 2012, Evolutionary applications.

[18]  L. A. Vøllestad,et al.  Strong gene flow and lack of stable population structure in the face of rapid adaptation to local temperature in a spring-spawning salmonid, the European grayling (Thymallus thymallus) , 2011, Heredity.

[19]  J. Hutchings,et al.  Old wine in new bottles: reaction norms in salmonid fishes , 2011, Heredity.

[20]  L. A. Vøllestad,et al.  Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation , 2010, BMC Evolutionary Biology.

[21]  R. Hilborn,et al.  Population diversity and the portfolio effect in an exploited species , 2010, Nature.

[22]  P. Prodöhl,et al.  Phylogeographic structure of brown trout Salmo trutta in Britain and Ireland: glacial refugia, postglacial colonization and origins of sympatric populations. , 2010, Journal of fish biology.

[23]  Michael B. Morrissey,et al.  The Maintenance of Genetic Variation Due to Asymmetric Gene Flow in Dendritic Metapopulations , 2009, The American Naturalist.

[24]  A. Gilles,et al.  Quaternary Pattern of Freshwater Fishes in Europe: Comparative Phylogeography and Conservation Perspective , 2009 .

[25]  F. Allendorf,et al.  Isozyme loci in brown trout (Salmo trutta L.): detection and interpretation from population data. , 2009, Hereditas.

[26]  F. Allendorf,et al.  Genetic variation in Scandinavian brown trout (Salmo trutta L.): evidence of distinct sympatric populations. , 2009, Hereditas.

[27]  V. Loeschcke,et al.  Local adaptation in brown trout early life-history traits: implications for climate change adaptability , 2008, Proceedings of the Royal Society B: Biological Sciences.

[28]  T. Quinn,et al.  A metapopulation perspective for salmon and other anadromous fish , 2007 .

[29]  L. Bernatchez,et al.  Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems , 2007, Molecular ecology.

[30]  W. Jordan,et al.  A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation , 2007, Biological reviews of the Cambridge Philosophical Society.

[31]  S. Kalinowski Counting Alleles with Rarefaction: Private Alleles and Hierarchical Sampling Designs , 2004, Conservation Genetics.

[32]  J. Carlsson,et al.  Population genetic structure of brown trout (Salmo trutta L.) within a northern boreal forest stream. , 2004, Hereditas.

[33]  G. Hewitt Genetic consequences of climatic oscillations in the Quaternary. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  L. Bernatchez THE EVOLUTIONARY HISTORY OF BROWN TROUT (SALMO TRUTTA L.) INFERRED FROM PHYLOGEOGRAPHIC, NESTED CLADE, AND MISMATCH ANALYSES OF MITOCHONDRIAL DNA VARIATION , 2001, Evolution; international journal of organic evolution.

[35]  Ø. Øverli,et al.  Microsatellites reveal fine‐scale genetic structure in stream‐living brown trout , 1999 .

[36]  P. Landergren,et al.  Spawning of sea trout, Salmo trutta L., in brackish waters—lost effort or successful strategy? , 1998 .

[37]  E. Nielsen,et al.  The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta L. , 1997 .

[38]  R. Frankham Relationship of genetic variation to population size in wildlife , 1996 .

[39]  F. Allendorf,et al.  The One‐Migrant‐per‐Generation Rule in Conservation and Management , 1996 .

[40]  G. Hewitt Some genetic consequences of ice ages, and their role in divergence and speciation , 1996 .

[41]  D. Skibinski,et al.  A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes , 1994 .

[42]  J. Taggart,et al.  Genetic differentiation among the sympatric brown trout (Salmo trutta) populations of Lough Melvin, Ireland , 1991 .

[43]  K. Hindar,et al.  Genetic Effects of Cultured Fish on Natural Fish Populations , 1991 .

[44]  R. Lande Genetics and demography in biological conservation. , 1988, Science.

[45]  A. Ferguson,et al.  Allozyme evidence for reproductively isolated sympatric populations of brown trout Salmo trutta L. in Lough Melvin, Ireland , 1981 .

[46]  S. Hawkins,et al.  Genetic markers in marine fisheries: Types, tasks and trends , 2016 .

[47]  W. Funk,et al.  Locally adapted traits maintained in the face of high gene flow. , 2015, Ecology letters.

[48]  B. Jonsson,et al.  Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. , 2009, Journal of fish biology.